日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時(shí)..所以函數(shù)在上單調(diào)遞增. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)

          (1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

          (2)當(dāng)時(shí),求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線(xiàn)方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當(dāng)……2分

             

          為所求切線(xiàn)方程!4分

          (2)當(dāng)

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調(diào)遞增。∴滿(mǎn)足要求。…10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

          【解析】第一問(wèn)中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以,

          所以

          第二問(wèn)中,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)

          (1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

          (2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

          【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿(mǎn)足恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。

          解:(1),

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

          所以 內(nèi)滿(mǎn)足恒成立,即恒成立,

          亦即

          即可  又

          當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),

          在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

          (2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

           上的增函數(shù),依題意需

          實(shí)數(shù)k的取值范圍是

           

          查看答案和解析>>

          已知函數(shù),其中.

            (1)若處取得極值,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問(wèn),處取得極值

          所以,,解得,此時(shí),可得求曲線(xiàn)在點(diǎn)

          處的切線(xiàn)方程為:

          第二問(wèn)中,易得的分母大于零,

          ①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

          ②當(dāng)時(shí),由可得,由解得

          第三問(wèn),當(dāng)時(shí)由(2)可知,上處取得最小值

          當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

           

          查看答案和解析>>

          已知函數(shù),

          (Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;

          (Ⅱ)求滿(mǎn)足下列條件的所有實(shí)數(shù)對(duì)(a,b):當(dāng)a是整數(shù)時(shí),存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

          (Ⅲ)對(duì)滿(mǎn)足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì)(a,b),試構(gòu)造一個(gè)定義在,且上的函數(shù)h(x),使當(dāng)x∈(-2,0)時(shí),h(x)=f(x),當(dāng)x∈D時(shí),h(x)取得最大值的自變量的值構(gòu)成以x0為首項(xiàng)的等差數(shù)列.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案