題目列表(包括答案和解析)
在空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點(diǎn),EF=,求AD與BC所成角的大小
(本題考查中位線(xiàn)法求異面二直線(xiàn)所成角)
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,,BC=1,
,PD=CD=2.
(I)求異面直線(xiàn)PA與BC所成角的正切值;
(II)證明平面PDC⊥平面ABCD;
(III)求直線(xiàn)PB與平面ABCD所成角的正弦值。
【考點(diǎn)定位】本小題主要考查異面直線(xiàn)所成的角、平面與平面垂直、直線(xiàn)與平面所成的角等基礎(chǔ)知識(shí).,考查空間想象能力、運(yùn)算求解能力和推理論證能力.
如圖所示的長(zhǎng)方體中,底面
是邊長(zhǎng)為
的正方形,
為
與
的交點(diǎn),
,
是線(xiàn)段
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線(xiàn)面平行的判定定理和線(xiàn)面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵
,
,
∴為平面
的法向量.∴利用法向量的夾角公式,
,
∴與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)
、
,
∴,又點(diǎn)
,
,∴
∴,且
與
不共線(xiàn),∴
.
又平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵,
∴,
,即
,
,
又,∴
平面
. ………8分
(Ⅲ)∵,
,∴
平面
,
∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴
,
∴與
的夾角為
,即二面角
的大小為
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com