日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析]由已知得.∴. 查看更多

           

          題目列表(包括答案和解析)

          已知

          的值.

          【解析】利用三角恒等變換得到函數(shù)值,

          由于 

          解析:   由    

           

          查看答案和解析>>

          已知在中,,,解這個(gè)三角形;

          【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又       

          再又得到c。

          解:由正弦定理得到:

                                ……4分

                ……8分

              

           

          查看答案和解析>>

          求由拋物線與直線所圍成圖形的面積.

          【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為

          解:設(shè)所求圖形面積為,則

          =.即所求圖形面積為

           

          查看答案和解析>>

          已知指數(shù)函數(shù),當(dāng)時(shí),有,解關(guān)于x的不等式

          【解析】本試題主要考查了指數(shù)函數(shù),對(duì)數(shù)函數(shù)性質(zhì)的運(yùn)用。首先利用指數(shù)函數(shù),當(dāng)時(shí),有,,得到,從而

          等價(jià)于,聯(lián)立不等式組可以解得

          解:∵ 時(shí),有, ∴ 

          于是由,得,

          解得, ∴ 不等式的解集為

           

          查看答案和解析>>

          已知,(其中

          ⑴求

          ⑵試比較的大小,并說(shuō)明理由.

          【解析】第一問(wèn)中取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得

          ,則得到結(jié)論

          第二問(wèn)中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

          解:⑴取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          當(dāng)時(shí),;                              …………6分

          猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

          由上述過(guò)程可知,時(shí)結(jié)論成立,

          假設(shè)當(dāng)時(shí)結(jié)論成立,即,

          當(dāng)時(shí),

          時(shí)結(jié)論也成立,

          ∴當(dāng)時(shí),成立。                          …………11分

          綜上得,當(dāng)時(shí),

          當(dāng)時(shí),;

          當(dāng)時(shí), 

           

          查看答案和解析>>

          1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.

          2. ∵,令,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.

          3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且,關(guān)于直線對(duì)稱,,關(guān)于直線對(duì)稱,∴;若,滿足條件的)存在,且關(guān)于直線對(duì)稱,關(guān)于直線對(duì)稱,

          4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

          ,

          當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為

          當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為3.

          5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

          (1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

          (2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

          于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

          6. ∵,∴,

          設(shè),則.

          作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

          ,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過(guò)點(diǎn)時(shí),取得最小值.

          解方程組,得,∴


          同步練習(xí)冊(cè)答案