日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. *16.函數(shù)f(x)=xn+(1-x)n.x∈(0.1).n∈N*.記y=f(x)的最小值為an.則a1+a2+-+a6= . 查看更多

           

          題目列表(包括答案和解析)

          (16)設函數(shù)f(x)=,點A0表示坐標原點,點An(n,f(n))(n∈N*).若向量

          θn的夾角(其中=(1,0)),

           

          設Sn=tanθl+tanθ2+…+tanθn,則Sn=_____________.

          查看答案和解析>>

          已知函數(shù)f(x)=(log2x)2-4log2x+1
          (1)求f(8)的值;
          (2)當2≤x≤16時,求f(x)的最大值和最小值.

          查看答案和解析>>

          某同學探究函數(shù)f(x)=x+
          4
          x
          (x>0)的最小值,并確定相應的x的值.先列表如下:
          x
          1
          4
          1
          2
          1
          3
          2
          2
          8
          3
          4 8 16
          y 16.25 8.5 5
          25
          6
          4
          25
          6
          5 8.5 16.25
          請觀察表中y值隨x值變化的特點,完成下列問題:((1)(2)問的填空只要寫出結(jié)果即可)
          (1)若x1x2=4,則 f(x1
          =
          =
          f(x2).(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間 (0,2)上遞減,則f(x)在區(qū)間
          (2,+∞)
          (2,+∞)
            上遞增;
          (2)當x=
          2
          2
          時,f(x)=x+
          4
          x
          (x>0)的最小值為
          4
          4
          ;
          (3)根據(jù)函數(shù)f(x)的有關性質(zhì),你能得到函數(shù)f(x)=x+
          4
          x
          (x<0)的最大值嗎?為什么?

          查看答案和解析>>

          己知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2y2)
          是f(x)圖象點的兩點,橫坐標為
          1
          2
          的點P是M,N的中點.
          (1)求證:y1+y2的定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,n≥2)
          ,an=
          1
          6
          ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*)
          ,Tn為數(shù)列{an}前n項和,當Tn<m(Sn+1+1)對一切n∈N*都成立時,試求實數(shù)m的取值范圍.
          (3)在(2)的條件下,設bn=
          1
          4(Sn+1+1)(Sn+2+1)+1
          ,Bn為數(shù)列{bn}前n項和,證明:Bn
          17
          52

          查看答案和解析>>

          已知函數(shù)f(x)=
          1
          4x+2
          (x∈R).
          (1)已知點(1,
          1
          6
          )
          在f(x)的圖象上,判斷其關于點(
          1
          2
          1
          4
          )
          對稱的點是否仍在f(x)的圖象上;
          (2)求證:函數(shù)f(x)的圖象關于點(
          1
          2
          ,
          1
          4
          )
          對稱;
          (3)若數(shù)列{an}的通項公式為an=f(
          n
          m
          )
          (m∈N*,n=1,2,…,m),求數(shù)列{an}的前m項和Sm

          查看答案和解析>>

          一、選擇題:(本大題12個小題,每小題5分,共60分)

          1.B.2.B.3.C.4.A.5.A.6.D.7.C.8.B.9.B.10.C.11.D.12.D.

          二、填空題:(本大題4個小題,每小題4分,共16分)

          13.;    14.(-∞,-1]∪[3,+∞)∪{0};    15.1,-1,2,-2;     16.

          三、解答題:(本大題6個小題,共74分)

          17.(12分)

          解:(Ⅰ)∵()2=?+?+?,∴ ()2=?(+)+? ,

           即()2=?+?,即?=0.∴△ABC 是以C為直角頂點的直角三角形.

          ∴sinA+sinB=sinA+cosA=sin(A+),A∈(0,) ,

          ∴sinA+sinB的取值范圍為

          (Ⅱ)在直角△ABC中, a=csinA,b=ccosA.

          若a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對任意的滿足題意的a、b、c都成立,

          則有≥k,對任意的滿足題意的a、b、c都成立,

          =[c2sin2A(ccosA+c)+c2cos2A(csinA+c)+c2(csinA+ccosA)]

          =[ sin2AcosA+cos2A sinA+1+cosA+sinA]=cosA+sinA+                           

          令t=sinA+cosA,t∈,

          設f(t)==t+=t+=t-1++1.

          f(t)=t-1++1,當t-1∈時 f(t)為單調(diào)遞減函數(shù),

          ∴當t=時取得最小值,最小值為2+3,即k≤2+3.

          ∴k的取值范圍為(-∞,2+3].

          命題意圖:本題是平面向量與三角函數(shù)相結(jié)合的問題,運用平面向量的運算的意義轉(zhuǎn)化為三角函數(shù)的邊角關系,進而運用三角函數(shù)的圖象與性質(zhì)求值域.第Ⅱ小題將不等式恒成立的問題轉(zhuǎn)化為求三角函數(shù)的最值,其中運用了換元法.

          18.(12分)

          解:(Ⅰ)一次摸獎從個球中任選兩個,有種,它們等可能,其中兩球不同色有種,一次摸獎中獎的概率

          (Ⅱ)若,一次摸獎中獎的概率,三次摸獎是獨立重復試驗,三次摸獎(每次摸獎后放回)恰有一次中獎的概率是

          (Ⅲ)設每次摸獎中獎的概率為,則三次摸獎(每次摸獎后放回)恰有一次中獎的概率為,

          ,知在為增函數(shù),在為減函數(shù),當取得最大值.又,解得

          答:當時,三次摸獎(每次摸獎后放回)恰有一次中獎的概率最大.

          命題意圖:本題是一個在等可能性事件基礎上的獨立重復試驗問題,體現(xiàn)了不同概型的綜合.第Ⅲ小題中的函數(shù)是三次函數(shù),運用了導數(shù)求三次函數(shù)的最值.如果學生直接用代替,函數(shù)將比較煩瑣,這時需要運用換元的方法,將看成一個整體,再求最值.

          19.(12分)

          (Ⅰ)解:∵f(x)+g(x)=10x ①,∴f(-x)+g(-x)=10x,∵f(x)為奇函數(shù),g(x)為偶函數(shù),∴f(-x)=-f(x),g(-x)=g(x),∴-f(x)+g(x)=10x ②,由①,②解得f(x)=(10x-),g(x)=(10x+).

          (Ⅱ)由y=(10x-)得,(10x)2-2y×10x-1=0,解得10xy±,

          ∵10x>0,∴10xy+,x=lg(y+),∴f(x)的反函數(shù)為f-1(x)=lg(x+).xR

          (Ⅲ)解法一:g(x1)+g(x2)=(10+)+(10+)=(10+10)+(+)

          ≥×2+×2=10+=2g().

          解法二:[g(x1)+g(x2)]-2g()=(10+)+(10+)-(10+)

          =-=

          =≥=0.

          (Ⅳ)f(x1x2)=f(x1)g(x2)-g(x1)f(x2),g(x1x2)=g(x1)g(x2)-f(x1)f(x2).

          命題意圖:考查函數(shù)的函數(shù)解析式,奇函數(shù),單調(diào)性,反函數(shù)等常規(guī)問題的處理方法,第(Ⅲ)問,第(Ⅳ)問把函數(shù)與不等式的證明,函數(shù)與指對式的化簡變形結(jié)合起來,考查學生綜合應用知識的能力.

          20.(12分)

          解:設進水量選第x級,則t小時后水塔中水的剩余量為:

          y=100+10xt-10t-100,且0≤t≤16.

          根據(jù)題意0<y≤300,∴0<100+10xt-10t-100≤300.?

          t=0時,結(jié)論成立.

          t>0時,由左邊得x>1+10()

          令m=,由0<t≤16,m ≥,

          f(t)=1+10()=1+10m210m3,(m ≥),

          f¢(t)=20m ? 30 m 2 =0得m = 0或m =

          ∵當≤m <時,f¢(t)>0;當m >時,f¢(t)<0,

          ∴所以m =時(此時t =),f(t)最大值=1+10(2-10(3=≈2.48.

          當t=時,1+10()有最大值2.48.∴x>2.48,即x≥3.

          由右邊得x≤+1,

          當t=16時,+1有最小值+1=∈(3,4).即x≤3.

          21.(12分)

          (Ⅰ)解:設N(x0,y0),(x0>0),則直線ON方程為yx,與直線x=-p交于點M(-p,-),代入=得,=,

          或=.

          化簡得(p2-1)x02p2y02p2-1.

          x0y0換成x,y得點N的軌跡方程為(p2-1)x2p2y2p2-1.(x>0)

          (1)當0<p<1時,方程化為x2-=1表示焦點在x軸上的雙曲線的右支;

          (2)當p=1時,方程化為y=0,表示一條射線(不含端點);

          (3)當p>1時,方程化為x2+=1表示焦點在x軸上的橢圓的右半部分.

          (Ⅱ)解:由(Ⅰ)可知|AN|==

          ==x0+1.

          當0<p<1時,因x0∈[1,+∞),故|AN|無最大值,不合題意.

          p=1,因x0∈(0,+∞),故|AN|無最大值,不合題意.

          p>1時,x0∈(0,1],故當x0=1時,|AN|有最大值+1,由題意得+1≤,

          解得p≥2.所以p的取值范圍為[2,+∞).

          命題意圖:通過用設點,代換,化簡,檢驗等步驟求曲線方程,考查解析幾何中已知曲線求方程的能力,并結(jié)合含參數(shù)的方程表示的曲線類型的討論考查學生的分類討論思想的應用.

          22.(14分)

          解:(Ⅰ)∵ ,aN*,

          ∴   ∴   ∴ 

          ∴            ∴ a=2或a=3.

          ∵當a=3時,由,即,與矛盾,故a=3不合題意.  

          a=3舍去,   ∴a=2.

          (Ⅱ),由可得.  

          .∴ 是5的約數(shù),又,∴ b=5 .

          (Ⅲ)若甲正確,則存在)使,即N*恒成立,

          時,,無解,所以甲所說不正確.

          若乙正確,則存在)使,即N*恒成立,

          時,,只有在時成立,

          而當不成立,所以乙所說也不成立.

          命題意圖:本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項,結(jié)合含兩個變量的不等式的處理問題,用兩邊夾的方法確定整數(shù)參數(shù).第Ⅲ小題對數(shù)學思維的要求比較高,要求學生理解“存在”、“恒成立”,以及運用一般與特殊的關系進行否定,本題有一定的探索性.

           

           

           


          同步練習冊答案