日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ③設(shè)A.B為兩個(gè)定點(diǎn).為常數(shù)..則動(dòng)點(diǎn)P的軌跡為橢圓, 查看更多

           

          題目列表(包括答案和解析)

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.
          (1)證明:對(duì)F不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);
          (2)證明:當(dāng)f0(x)∈M時(shí),f1(x)=f0(x+t)∈M,這里t為常數(shù);
          (3)對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下點(diǎn)(m,n)的象屬于M1,問(wèn):由所有符合條件的點(diǎn)(m,n)構(gòu)成的圖形是什么?

          查看答案和解析>>

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.
          (1)證明:對(duì)F不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);
          (2)證明:當(dāng)f(x)∈M時(shí),f1(x)=f(x+t)∈M,這里t為常數(shù);
          (3)對(duì)于屬于M的一個(gè)固定值f(x),得M1={f(x+t)|t∈R},若映射F的作用下點(diǎn)(m,n)的象屬于M1,問(wèn):由所有符合條件的點(diǎn)(m,n)構(gòu)成的圖形是什么?

          查看答案和解析>>

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.
          (1)證明:對(duì)F不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);
          (2)證明:當(dāng)f0(x)∈M時(shí),f1(x)=f0(x+t)∈M,這里t為常數(shù);
          (3)對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下點(diǎn)(m,n)的象屬于M1,問(wèn):由所有符合條件的點(diǎn)(m,n)構(gòu)成的圖形是什么?

          查看答案和解析>>

          以下三個(gè)命題中:
          ①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
          ②雙曲線
          x2
          25
          -
          y2
          9
          =1與橢圓
          x2
          35
          +y2=1
          有相同的焦點(diǎn).
          ③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
          其中真命題的序號(hào)為
          ②③
          ②③
          (寫出所有真命題的序號(hào))

          查看答案和解析>>

          以下所給的命題中:
          ①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
          PA
          |-|
          PB
          |=k
          ,則動(dòng)點(diǎn)P的軌跡為雙曲線;
          ②垂直于同一直線的兩條直線相互平行;
          ③向量
          a
          =(1,2)按
          b
          =(1,1)平移得
          c
          =(2,3);
          ④雙曲線
          x2
          25
          -
          y2
          9
          =1
          與橢圓
          x2
          35
          +y2=1
          有相同的焦點(diǎn).
          ⑤曲線x3-y3+9x2y+9xy2=0關(guān)于原點(diǎn)對(duì)稱.
          其中真命題的序號(hào)為_(kāi)_____.(寫出所有真命題的序號(hào))

          查看答案和解析>>

          一、選擇題:(本大題共10小題,每小題5分,共50分)

            1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

          二、填空題:(本大題共6小題,每小題4分,共24分 )

          11  (文)“若,則” ,(理)

          12  (文) ,(理), 

          13  (文),(理)-2

          14  -2      15            16  ②④

          三、解答題:(本大題共6個(gè)解答題,滿分76分,)

          17  (文)解:以AN所在直線為x軸,AN的中垂

          線為y軸建立平面直角坐標(biāo)系如圖所示,

          則A(-4,0),N(4,0),設(shè)P(x,y)  

          由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                                       

          代入坐標(biāo)得:        

          整理得:                        

                                      

          所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

          (理)解:(I)當(dāng)a=1時(shí)  

                                      

           或         

                                         

          (II)原不等式              

          設(shè) 

          當(dāng)且僅當(dāng)

          時(shí)                    

          依題有:10a<10  ∴為所求  

           18  (文)解:

            

             解得        

                             

                                      

           

          若由方程組解得,可參考給分

          (理)解:(Ⅰ)設(shè)    (a≠0),則

                     ……     ①

                    ……    ②

          又∵有兩等根

                ∴……  ③

          由①②③得                         

          又∵

            ∴a<0, 故

                                  

              (Ⅱ)

                                  

                 ∵g(x)無(wú)極值

                 ∴方程

                

                得                      

          19  (文)解:(I)當(dāng)a=1時(shí)  

                                      

           或         

                                        

          (II)原不等式              

          設(shè) 

          當(dāng)且僅當(dāng)

          時(shí)                   

          依題有:10a<10  ∴為所求                       

           

          (理)解:以AN所在直線為x軸,AN的中垂

          線為y軸建立平面直角坐標(biāo)系如圖所示,

          則A(-4,0),N(4,0),設(shè)P(x,y)  

          由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                                        

          代入坐標(biāo)得:        

          整理得:                       

                                      

          所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

          20  (文)解:(Ⅰ)設(shè)    (a≠0),則

                     ……     ①

                    ……    ②

          又∵有兩等根

                ∴……  ③

          由①②③得                         

          又∵

            ∴a<0, 故

                                 

              (Ⅱ)

                                  

                 ∵g(x)無(wú)極值

                 ∴方程

                

                得                             

          (理)解:(I)設(shè)       (1)

               (2)

          由(1),(2)解得              

          (II)由向量與向量的夾角為

          及A+B+C=知A+C=

                      

               

          由0<A<,得

          的取值范圍是                      

           

          21   解:(I)由已知得Sn=2an-3n,

          Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

          所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

          所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

          所以3+an=6,即an=3()                           

          同步練習(xí)冊(cè)答案