日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)由題設(shè).可設(shè)直線的方程為.直線的方程為..又設(shè).. 查看更多

           

          題目列表(包括答案和解析)

          已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點(diǎn).

          (Ⅰ)當(dāng)直線過右焦點(diǎn)時,求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

          【解析】第一問中因?yàn)橹本經(jīng)過點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

          第二問中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          已知曲線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時針次序排列,點(diǎn)A的極坐標(biāo)為(2,).

          (Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);

           (Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.

          【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.

          【解析】(Ⅰ)由已知可得,,

          ,,

          即A(1,),B(-,1),C(―1,―),D(,-1),

          (Ⅱ)設(shè),令=

          ==,

          ,∴的取值范圍是[32,52]

           

          查看答案和解析>>

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時,求實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問中,利用

          第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>

          給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
          (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果   

          查看答案和解析>>

          給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
          (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果   

          查看答案和解析>>


          同步練習(xí)冊答案