日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故平面.即是平面的法向量. 查看更多

           

          題目列表(包括答案和解析)

          如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

          (3)因為∴為面的法向量.∵,

          為平面的法向量.∴利用法向量的夾角公式,,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、

          ,又點,∴

          ,且不共線,∴

          平面,平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,,即,

          ,∴平面.   ………8分

          (Ⅲ)∵,,∴平面,

          為面的法向量.∵,,

          為平面的法向量.∴,

          的夾角為,即二面角的大小為

           

          查看答案和解析>>

          在空間中,“經過點P(x0,y0,z0),法向量為
          e
          =(A,B,C)
          的平面的方程(即平面上任意一點的坐標(x,y,z)滿足的關系)是:A(x-x0)+B(y-y0)+C(z-z0)=0”.如果給出平面α的方程是x-y+z=1,平面β的方程是
          x
          6
          -
          y
          3
          -
          z
          6
          =1
          ,則由這兩平面所成的二面角的正弦值是( 。
          A、
          7
          3
          B、
          6
          3
          C、
          78
          9
          D、
          1
          3

          查看答案和解析>>

          如圖,四棱錐中,底面是邊長為2的正方形,,且,中點.

          (Ⅰ)求證:平面;    

          (Ⅱ)求二面角的大。

          (Ⅲ)在線段上是否存在點,使得點到平

          的距離為?若存在,確定點的位置;

          若不存在,請說明理由.

           

          查看答案和解析>>

          紙質的正方體的六個面根據(jù)其方位分別標記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱 將正方體剪開、外面朝上展平,得到右側的平面圖形,則標“△”的面的方位是

           

           

          A.南            B.北        C.西       D.下

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          單調遞減;當單調遞增,故當時,取最小值

          于是對一切恒成立,當且僅當.       、

          時,單調遞增;當時,單調遞減.

          故當時,取最大值.因此,當且僅當時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當時,單調遞減;當時,單調遞增.故當,

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

           

          查看答案和解析>>


          同步練習冊答案