日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 證明不等式: [必做題]第22題.第23題.每題10分.共計20分. 請在答題紙指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明.證明過程或演算步驟. 查看更多

           

          題目列表(包括答案和解析)

          已知,函數(shù)(其中為自然對數(shù)的底數(shù)).

            (Ⅰ)求函數(shù)在區(qū)間上的最小值;

            (Ⅱ)設(shè)數(shù)列的通項,是前項和,證明:

          【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運用,求解函數(shù)給定區(qū)間的最值問題,以及能結(jié)合數(shù)列的相關(guān)知識,表示數(shù)列的前n項和,同時能構(gòu)造函數(shù)證明不等式的數(shù)學(xué)思想。是一道很有挑戰(zhàn)性的試題。

           

          查看答案和解析>>

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

          (1)解:設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調(diào)遞增.……10分

          ,即

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域為

          ,得

          當(dāng)x變化時,,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

          ,得

          ①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

          當(dāng)時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          由下列不等式:,,, ,,你能得到一個怎樣的一般不等式?并加以證明。

          【解析】本試題主要考查了合情推理的數(shù)學(xué)思想,關(guān)鍵是觀察到表達(dá)式的特點,以及運用數(shù)學(xué)歸納法證明不等式的重要的數(shù)學(xué)思想。

           

          查看答案和解析>>

          集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數(shù)i,j滿足下列條件:
          ①i∉Ai,且每一個Ai至少含有三個元素;
          ②i∈Aj的充要條件是j∉Aj(其中i≠j).
          為了表示這些子集,作n行n列的數(shù)表(即n×n數(shù)表),規(guī)定第i行第j列數(shù)為:aij=
          0   當(dāng)i∉AJ
          1        當(dāng)i∈AJ時  

          (1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數(shù)表(填符合題意的一種即可);
          (2)用含n的代數(shù)式表示n×n數(shù)表中1的個數(shù)f(n),并證明n≥7;
          (3)設(shè)數(shù)列{an}前n項和為f(n),數(shù)列{cn}的通項公式為:cn=5an+1,證明不等式:
          5cmn
          -
          cmcn
          >1對任何正整數(shù)m,n都成立.(第1小題用表)
          1 2 3 4 5 6 7
          1 0
          2 0
          3 0
          4 0
          5 0
          6 0
          7 0

          查看答案和解析>>

           

          第 一 部 分

           

          一、填空題:

          1.        2.          3.1            4.16

          5.                                 6.               7.64           8.

          9.25                                 10.①④            11.        12.

          13.                          14.

          二、解答題:

          15.解:(Ⅰ)依題意:,

          ,解之得,(舍去)   …………………7分

          (Ⅱ),∴  ,,  ………………………9分

          ∴    …………………………………11分

          .      ……………………………………………14分

          16.解:(Ⅰ)因為主視圖和左視圖均為矩形、所以該三棱柱為直三棱柱.

          連BC1交B1C于O,則O為BC1的中點,連DO。

          則在中,DO是中位線,

          ∴DO∥AC1.                ………………………………………………………4分

          ∵DO平面DCB1,AC1平面DCB1,

          ∴AC1∥平面CDB1.           ………………………………………………………7分

          (Ⅱ)由已知可知是直角三角形,

          ∵ 

          ∴  平面平面,

          ∴   。

          ∵   ,

          ∴  平面,

          平面

          ∴  。

          17.解:(Ⅰ)由題意知:

          一般地: ,…4分

          ∴  )!7分

          (Ⅱ)2008年諾貝爾獎發(fā)獎后基金總額為:

           ,…………………………………………10分

          2009年度諾貝爾獎各項獎金額為萬美元, ………12分

          與150萬美元相比少了約14萬美元。     …………………………………………14分

          答:新聞 “2009年度諾貝爾獎各項獎金高達(dá)150萬美元”不真,是假新聞!15分

          18.解:(Ⅰ)圓軸交點坐標(biāo)為,

          ,故,    …………………………………………2分

          所以,

          橢圓方程是:               …………………………………………5分

          (Ⅱ)設(shè)直線軸的交點是,依題意

          ,

          ,

          ,

          ,

           

          (Ⅲ)直線的方程是,…………………………………………………6分

          圓D的圓心是,半徑是,……………………………………………8分

          設(shè)MN與PD相交于,則是MN的中點,且PM⊥MD,

          ……10分

          當(dāng)且僅當(dāng)最小時,有最小值,

          最小值即是點到直線的距離是,…………………12分

          所以的最小值是。  ……………………………15分

           

          19.解:(Ⅰ)點的坐標(biāo)依次為,,…,

          ,…,           ……………………………2分

          …,

          共線;則,

          , ……………………………4分

          ,

          ,

          所以數(shù)列是等比數(shù)列。          ……………………………………………6分

          (Ⅱ)依題意,

          ,

          兩式作差,則有:,   ………………………8分

          ,故,   ……………………………………………10分

          即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項依次為

          ,

          ,可得,

          ,或,或。           ………………………………………12分

          數(shù)列的通項公式是,或,或。    ………14分

          知,時,不合題意;

          時,不合題意;

          時,;

          所以,數(shù)列的通項公式是。  ……………………………………16分

           

          20.解:(Ⅰ)函數(shù)定義域,

          ,    ……………………………………………4分

          (Ⅱ),由(Ⅰ)

          ,

          ,單調(diào)遞增,

          所以。

          設(shè),

          ,

          ,也就是。

          所以,存在值使得對一個,方程都有唯一解!10分

          (Ⅲ)

          ,

          以下證明,對的數(shù)及數(shù),不等式不成立。

          反之,由,亦即成立,

          因為,

          ,這是不可能的。這說明是滿足條件的最小正數(shù)。

          這樣不等式恒成立,

          恒成立,

          ∴  ,最小正數(shù)=4 !16分

           

           第二部分(加試部分)

          21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

          △ADE∽△ACO,                ……………………………………………8分

          CD=3                         ……………………………………………10分

          (B)解:(Ⅰ),

          所以點作用下的點的坐標(biāo)是!5分

          (Ⅱ),

          設(shè)是變換后圖像上任一點,與之對應(yīng)的變換前的點是

          ,

          也就是,即,

          所以,所求曲線的方程是。……………………………………………10分

          (C)解:由已知圓的半徑為,………4分

          又圓的圓心坐標(biāo)為,所以圓過極點,

          所以,圓的極坐標(biāo)方程是!10分

          (D)證明:

                      ……………………………………6分

          =2-

          <2                              ……………………………………10分

           

           

           

          22.解:(Ⅰ)∵,∴,

          ∴切線l的方程為,即.……………………………………………4分

          (Ⅱ)令=0,則.令=0,則x=1.

           ∴A=.………………10分

          23.解:(Ⅰ)記“該生在前兩次測試中至少有一次通過”的事件為事件A,則

          P(A)=

          答:該生在前兩次測試中至少有一次通過的概率為。 …………………………4分

          (Ⅱ)參加測試次數(shù)的可能取值為2,3,4,

                ,

              ,

                ,    ……………………………………………7分

                  故的分布列為:

          2

          3

          4

               ……………………………………………10分

           

           

           


          同步練習(xí)冊答案