日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求點(diǎn)在作用下的點(diǎn)的坐標(biāo), 查看更多

           

          題目列表(包括答案和解析)

          22.(1)求右焦點(diǎn)坐標(biāo)是,且經(jīng)過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

          (2)已知橢圓的方程是. 設(shè)斜率為的直線,交橢圓兩點(diǎn),的中點(diǎn)為. 證明:當(dāng)直線平行移動(dòng)時(shí),動(dòng)點(diǎn)在一條過原點(diǎn)的定直線上;

          (3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

          查看答案和解析>>

          (1)若點(diǎn)A(a,b)(其中a≠b)在矩陣M=
          0-1
          10
          對應(yīng)變換的作用下得到的點(diǎn)為B(-b,a).
          (Ⅰ)求矩陣M的逆矩陣;
          (Ⅱ)求曲線C:x2+y2=1在矩陣N=
          0
          1
          2
          10
          所對應(yīng)變換的作用下得到的新的曲線C′的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          (Ⅰ)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位已知直線的極坐標(biāo)方程為θ=
          π
          4
          (ρ∈R)
          ,它與曲線
          x=2+
          5
          cosθ
          y=1+
          5
          sinθ
          為參數(shù))相交于兩點(diǎn)A和B,求|AB|;
          (Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-
          π
          4
          )=
          2
          ,曲線C2的參數(shù)方程為:
          x=1+cosθ
          y=3+sinθ
          (θ為參數(shù)),試求曲線C2關(guān)于直線C1對稱的曲線的直角坐標(biāo)方程.
          (3)選修4-5:不等式選講
          (Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實(shí)數(shù)m的取值范圍.
          (Ⅱ)已知實(shí)數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

          查看答案和解析>>

          在直角坐標(biāo)平面內(nèi),將每個(gè)點(diǎn)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,將每個(gè)點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/9/sfwpq1.png" style="vertical-align:middle;" />倍的變換所對應(yīng)的矩陣為
          (1)求矩陣的逆矩陣;
          (2)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

          查看答案和解析>>

          在直角坐標(biāo)平面內(nèi),將每個(gè)點(diǎn)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,將每個(gè)點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052502322344.png" style="vertical-align:middle;" />倍的變換所對應(yīng)的矩陣為
          (1)求矩陣的逆矩陣;
          (2)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

          查看答案和解析>>

          設(shè)M是把坐標(biāo)平面上點(diǎn)的橫坐標(biāo)不變、縱坐標(biāo)沿y軸方向伸長為原來5倍的伸壓變換.
          (1)求直線4x-10y=1在M作用下的方程;
          (2)求M的特征值與特征向量.

          查看答案和解析>>

           

          第 一 部 分

           

          一、填空題:

          1.        2.          3.1            4.16

          5.                                 6.               7.64           8.

          9.25                                 10.①④            11.        12.

          13.                          14.

          二、解答題:

          15.解:(Ⅰ)依題意:,

          ,解之得(舍去)   …………………7分

          (Ⅱ),∴  ,,  ………………………9分

          ∴    …………………………………11分

          .      ……………………………………………14分

          16.解:(Ⅰ)因?yàn)橹饕晥D和左視圖均為矩形、所以該三棱柱為直三棱柱.

          連BC1交B1C于O,則O為BC1的中點(diǎn),連DO。

          則在中,DO是中位線,

          ∴DO∥AC1.                ………………………………………………………4分

          ∵DO平面DCB1,AC1平面DCB1

          ∴AC1∥平面CDB1.           ………………………………………………………7分

          (Ⅱ)由已知可知是直角三角形,

          ∵  ,

          ∴  平面,平面,

          ∴  

          ∵   ,

          ∴  平面

          平面,

          ∴ 

          17.解:(Ⅰ)由題意知:,

          一般地: ,…4分

          ∴  )!7分

          (Ⅱ)2008年諾貝爾獎(jiǎng)發(fā)獎(jiǎng)后基金總額為:

           ,…………………………………………10分

          2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金額為萬美元, ………12分

          與150萬美元相比少了約14萬美元。     …………………………………………14分

          答:新聞 “2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金高達(dá)150萬美元”不真,是假新聞!15分

          18.解:(Ⅰ)圓軸交點(diǎn)坐標(biāo)為,

          ,,故,    …………………………………………2分

          所以,

          橢圓方程是:               …………………………………………5分

          (Ⅱ)設(shè)直線軸的交點(diǎn)是,依題意,

          ,

          ,

          ,

          ,

           

          (Ⅲ)直線的方程是,…………………………………………………6分

          圓D的圓心是,半徑是,……………………………………………8分

          設(shè)MN與PD相交于,則是MN的中點(diǎn),且PM⊥MD,

          ……10分

          當(dāng)且僅當(dāng)最小時(shí),有最小值,

          最小值即是點(diǎn)到直線的距離是,…………………12分

          所以的最小值是。  ……………………………15分

           

          19.解:(Ⅰ)點(diǎn)的坐標(biāo)依次為,,…,

          ,…,           ……………………………2分

          ,…,

          共線;則,

          ,

          , ……………………………4分

          ,

          ,

          所以數(shù)列是等比數(shù)列。          ……………………………………………6分

          (Ⅱ)依題意,

          兩式作差,則有:,   ………………………8分

          ,故,   ……………………………………………10分

          即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項(xiàng)依次為

          ,

          ,可得

          ,或,或。           ………………………………………12分

          數(shù)列的通項(xiàng)公式是,或,或。    ………14分

          知,時(shí),不合題意;

          時(shí),不合題意;

          時(shí),;

          所以,數(shù)列的通項(xiàng)公式是。  ……………………………………16分

           

          20.解:(Ⅰ)函數(shù)定義域

          ,    ……………………………………………4分

          (Ⅱ),由(Ⅰ)

          ,

          單調(diào)遞增,

          所以。

          設(shè)

          ,

          ,也就是

          所以,存在值使得對一個(gè),方程都有唯一解。………10分

          (Ⅲ),

          ,

          以下證明,對的數(shù)及數(shù),不等式不成立。

          反之,由,亦即成立,

          因?yàn)?sub>,

          ,這是不可能的。這說明是滿足條件的最小正數(shù)。

          這樣不等式恒成立,

          恒成立,

          ∴  ,最小正數(shù)=4 !16分

           

           第二部分(加試部分)

          21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

          △ADE∽△ACO,                ……………………………………………8分

          CD=3                         ……………………………………………10分

          (B)解:(Ⅰ),

          所以點(diǎn)作用下的點(diǎn)的坐標(biāo)是。…………………………5分

          (Ⅱ),

          設(shè)是變換后圖像上任一點(diǎn),與之對應(yīng)的變換前的點(diǎn)是,

          也就是,即

          所以,所求曲線的方程是!10分

          (C)解:由已知圓的半徑為,………4分

          又圓的圓心坐標(biāo)為,所以圓過極點(diǎn),

          所以,圓的極坐標(biāo)方程是!10分

          (D)證明:

                      ……………………………………6分

          =2-

          <2                              ……………………………………10分

           

           

           

          22.解:(Ⅰ)∵,∴

          ∴切線l的方程為,即.……………………………………………4分

          (Ⅱ)令=0,則.令=0,則x=1.

           ∴A=.………………10分

          23.解:(Ⅰ)記“該生在前兩次測試中至少有一次通過”的事件為事件A,則

          P(A)=

          答:該生在前兩次測試中至少有一次通過的概率為。 …………………………4分

          (Ⅱ)參加測試次數(shù)的可能取值為2,3,4,

                ,

              ,

                ,    ……………………………………………7分

                  故的分布列為:

          2

          3

          4

               ……………………………………………10分

           

           

           


          同步練習(xí)冊答案