日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ┉┉┉┉7分 (2)∵(2a-c)cosB=bcosC 由正弦定理得cosB=sinBcosC ┉┉┉┉┉┉8分 ∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C) 查看更多

           

          題目列表(包括答案和解析)

          18、為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這一次競賽,為了解本次競賽成績情況,從中抽取了部分學生的成績進行統(tǒng)計,請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:

          (1)填充頻率分布表的空格(將答案直接填在表格內(nèi));7分
          (2)補全頻率分布直方圖;11分
          (3)若成績在60.5~80.5分的學生為三等獎,問全校獲得三等獎的學生約為多少人?

          查看答案和解析>>

          已知函數(shù),數(shù)列的項滿足: ,(1)試求

          (2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.

          【解析】第一問中,利用遞推關(guān)系,

          ,   

          第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。

          解: (1) ,

          ,    …………….7分

          (2)由(1)猜想得:

          (數(shù)學歸納法證明)i) ,  ,命題成立

          ii) 假設(shè)時,成立

          時,

                                        

          綜合i),ii) : 成立

           

          查看答案和解析>>

          在平面直角坐標系,已知圓心在第二象限、半徑為的圓與直線相切于坐標原點.橢圓與圓的一個交點到橢圓兩焦點的距離之和為

          (1)求圓的方程;                (7分)

          (2)試探究圓上是否存在異于原點的點,使到橢圓右焦點的距離等于線段的長,若存在,請求出點的坐標;若不存在,請說明理由.  (7分)

          查看答案和解析>>

          設(shè)是兩個不共線的非零向量.

          (1)若=,==,求證:AB,D三點共線;

          (2)試求實數(shù)k的值,使向量共線. (本小題滿分13分)

          【解析】第一問利用=()+()+==得到共線問題。

          第二問,由向量共線可知

          存在實數(shù),使得=()

          =,結(jié)合平面向量基本定理得到參數(shù)的值。

          解:(1)∵=()+()+

          ==    ……………3分

               ……………5分

          又∵A,B,D三點共線   ……………7分

          (2)由向量共線可知

          存在實數(shù),使得=()   ……………9分

          =   ……………10分

          又∵不共線

            ……………12分

          解得

           

          查看答案和解析>>

          在平面直角坐標系,已知圓心在第二象限、半徑為的圓與直線相切于坐標原點.橢圓與圓的一個交點到橢圓兩焦點的距離之和為

          (1)求圓的方程;                (7分)

          (2)試探究圓上是否存在異于原點的點,使到橢圓右焦點的距離等于線段的長,若存在,請求出點的坐標;若不存在,請說明理由.  (7分)

          查看答案和解析>>


          同步練習冊答案