日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析](1)設(shè).則.所以. 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè),

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          設(shè)f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

          (Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

          (Ⅱ)若f (θ)=,其中,求cos(θ)的值;

          【解析】第一問中,

          變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;

          第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而

          進(jìn)而得到結(jié)論。

          (Ⅰ) 解:

          。…………………………………3

          變換的步驟是:

          ①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;…………………………………3

          (Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2

          (1)當(dāng)時(shí),;…………2

          (2)當(dāng)時(shí);

           

          查看答案和解析>>

          若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

          (Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

          (Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

          【解析】第一問中,利用定義,判定由題意得,由,所以

          第二問中, 由題意得方程有兩實(shí)根

          設(shè)所以關(guān)于m的方程有兩實(shí)根,

          即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。

          解(I)由題意得,由,所以     (6分)

          (II)由題意得方程有兩實(shí)根

          設(shè)所以關(guān)于m的方程有兩實(shí)根,

          即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。

           

          查看答案和解析>>

          設(shè)數(shù)列的各項(xiàng)均為正數(shù).若對(duì)任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

          (1)若數(shù)列是“J2型”數(shù)列,且,,求;

          (2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

          【解析】1)中由題意,得,,,,…成等比數(shù)列,且公比,

          所以.

          (2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得

          ,…成等比數(shù)列,設(shè)公比為;

          ,…成等比數(shù)列,設(shè)公比為;

          …成等比數(shù)列,設(shè)公比為

           

          查看答案和解析>>

          如圖,四棱柱中,平面,底面是邊長(zhǎng)為的正方形,側(cè)棱

          。ǎ保┣笕忮F的體積;

          。ǎ玻┣笾本與平面所成角的正弦值;

           (3)若棱上存在一點(diǎn),使得,當(dāng)二面角的大小為時(shí),求實(shí)數(shù)的值.

          【解析】(1)在中,

          .                 (3’)

          (2)以點(diǎn)D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則

                 (4’)

          ,設(shè)平面的法向量為,

          ,                                             (5’)

          ,

          .  (7’)

          (3)

          設(shè)平面的法向量為,由,      (10’)

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案