日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (其中為小于6的正常數(shù)) 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分20分,其中第1小題4分,第2小題6分,第3小題10分)

          已知是直線上的個(gè)不同的點(diǎn)(、均為非零常數(shù)),其中數(shù)列為等差數(shù)列.

          (1)求證:數(shù)列是等差數(shù)列;

          (2)若點(diǎn)是直線上一點(diǎn),且,求證: ;

          (3) 設(shè),且當(dāng)時(shí),恒有都是不大于的正整數(shù), 且).試探索:在直線上是否存在這樣的點(diǎn),使得成立?請(qǐng)說明你的理由.

          查看答案和解析>>

          某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率與日產(chǎn)量(萬件)之間滿足關(guān)系:

          (其中為小于6的正常數(shù))

          (注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

              (1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);

              (2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

          查看答案和解析>>

          某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率與日產(chǎn)量(萬件)之間大體滿足關(guān)系:(其中為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.(1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

           

          查看答案和解析>>

          某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率與日產(chǎn)量(萬件)之間大體滿足關(guān)系:

          (其中為小于6的正常數(shù))

          (注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)

          已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

          (1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);

          (2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

          查看答案和解析>>

          古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
          他們研究過圖①中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù),由三角形數(shù)構(gòu)成數(shù)列{an};類似地,稱圖②中的1,4,9,16,…這樣的數(shù)為正方形數(shù).由正方形數(shù)構(gòu)成數(shù)列{bn}. 1225既是三角形數(shù)數(shù)列{an}中的第m項(xiàng)又是正方形數(shù)數(shù)列{bn}中第k項(xiàng),則m+k=( 。

          查看答案和解析>>

          一.選擇題

          1~10  BADDA    BCBCD

          二.填空題

          11.2      12.      13.      14.8        15.45

          三.解答題

          16.解:因?yàn)?sub>,所以 ………………………………(1分)

             由,解得 ………………………………(3分)

            因?yàn)?sub>,故集合應(yīng)分為兩種情況

          (1)時(shí),  …………………………………(6分)

          (2)時(shí),  ……………………………………(8分)

          所以     …………………………………………………(9分)

          假,則…………………………………………………………(10分)

          真,則  ……………………………………………………………(11分)

          故實(shí)數(shù)的取值范圍為………………………………………(12分)

          17.解:(1)由1的解集有且只有一個(gè)元素知

                  ………………………………………(2分)

          當(dāng)時(shí),函數(shù)上遞增,此時(shí)不滿足條件2

          綜上可知  …………………………………………(3分)

           ……………………………………(6分)

          (2)由條件可知……………………………………(7分)

          當(dāng)時(shí),令

          所以……………………………………………………………(9分)

          時(shí),也有……………………………(11分)

          綜上可得數(shù)列的變號(hào)數(shù)為3……………………………………………(12分)

          18.解:(1)當(dāng)時(shí),………………………(1分)

           當(dāng)時(shí),……………………(2分)

          ,知又是周期為4的函數(shù),所以

          當(dāng)時(shí)

          …………………………(4分)

          當(dāng)時(shí)

          …………………………(6分)

          故當(dāng)時(shí),函數(shù)的解析式為

          ………………………………(7分)

          (2)當(dāng)時(shí),由,得

          解上述兩個(gè)不等式組得…………………………………………(10分)

          的解集為…………………(12分)

          19.解:(1)當(dāng)時(shí),,……………………(2分)

          當(dāng)時(shí),,

          綜上,日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù)關(guān)系為:

          …………………………………………………………(4分)

          (2)由(1)知,當(dāng)時(shí),每天的盈利額為0……………………………(6分)

                  當(dāng)時(shí),

          當(dāng)且僅當(dāng)時(shí)取等號(hào)

          所以當(dāng)時(shí),,此時(shí)……………………………(8分)

                      當(dāng)時(shí),由

          函數(shù)上遞增,,此時(shí)……(10分)

          綜上,若,則當(dāng)日產(chǎn)量為3萬件時(shí),可獲得最大利潤

                  若,則當(dāng)日產(chǎn)量為萬件時(shí),可獲得最大利潤…………(12分)

          20.解:(1)將點(diǎn)代入

                 因?yàn)橹本,所以……………………………………(3分)

                 (2) ,

          當(dāng)為偶數(shù)時(shí),為奇數(shù),……………(5分)

          當(dāng)為奇數(shù)時(shí),為偶數(shù),(舍去)

          綜上,存在唯一的符合條件…………………………………………………(7分)

          (3)證明不等式即證明

               成立,下面用數(shù)學(xué)歸納法證明

          1當(dāng)時(shí),不等式左邊=,原不等式顯然成立………………………(8分)

          2假設(shè)時(shí),原不等式成立,即

              當(dāng)時(shí)

               =

          ,即時(shí),原不等式也成立 ………………(11分)

          根據(jù)12所得,原不等式對(duì)一切自然數(shù)都成立 ……………………………(13分)

          21.解:(1)由……………………(1分)

               

               又的定義域?yàn)?sub>,所以

          當(dāng)時(shí),

          當(dāng)時(shí),,為減函數(shù)

          當(dāng)時(shí),,為增函數(shù)………………………(5分)

             所以當(dāng)時(shí),的單調(diào)遞增區(qū)間為

                                   單調(diào)遞減區(qū)間為…………………(6分)

          (2)由(1)知當(dāng)時(shí),,遞增無極值………(7分)

          所以處有極值,故

               因?yàn)?sub>,所以上單調(diào)

               當(dāng)為增區(qū)間時(shí),恒成立,則有

              ………………………………………(9分)

          當(dāng)為減區(qū)間時(shí),恒成立,則有

          無解  ……………………(13分)

          由上討論得實(shí)數(shù)的取值范圍為 …………………………(14分)

           

           

           


          同步練習(xí)冊(cè)答案