日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知是直線上定點,M是平面上的動點,則的最小值是( ) (A) (B) (C) (D) 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)已知點B(-1,0)、C(1,0),平面上的動點P滿足|
          CP
          |•|
          BC
          |=
          BP
          BC
          ,記動點P的軌跡為曲線E.過點C作直線交曲線E于兩點M、N,G為線段MN的中點,過點G作x軸的平行線與曲線E在點M處的切線交與點A.
          (Ⅰ)求曲線E的方程.
          (Ⅱ)試問點A是否恒在一條定直線上?證明你的結論.

          查看答案和解析>>

          已知F(1,0),P是平面上一動點,P到直線l:x=-1上的射影為點N,且滿足(
          PN
          +
          1
          2
          NF
          )•
          NF
          =0

          (Ⅰ)求點P的軌跡C的方程;
          (Ⅱ)過點M(1,2)作曲線C的兩條弦MD,ME,且MD,ME所在直線的斜率為k1,k2,滿足k1k2=1,
          求證:直線DE過定點,并求出這個定點.

          查看答案和解析>>

          已知M(-3,0)﹑N(3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m(m≥-1,m≠0).
          (1)求P點的軌跡方程并討論軌跡是什么曲線?
          (2)若m=-
          5
          9
          ,P點的軌跡為曲線C,過點Q(2,0)斜率為k1的直線?1與曲線C交于不同的兩點A﹑B,AB中點為R,直線OR(O為坐標原點)的斜率為k2,求證k1k2為定值;
          (3)在(2)的條件下,設
          QB
          AQ
          ,且λ∈[2,3],求?1在y軸上的截距的變化范圍.

          查看答案和解析>>

          已知點F(1,0),直線l:x=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
          QP
          QF
          =
          FP
          FQ

          (1)求動點P的軌跡C的方程;
          (2)已知點A(m,2)在曲線C上,過點A作曲線C的兩條弦AD,AE,且AD,AE的斜率k1、k2滿足k1•k2=2,試推斷:動直線DE是否過定點?證明你的結論.

          查看答案和解析>>

          已知定點A(1,0),B(-1,0),C(0,1),D(0,2),動點P滿足:
          AP
          BP
          =k|
          PC
          |
          2

          (1)求動點P軌跡M的方程,并說明方程表示的曲線類型;
          (2)當k=2時:
          ①E是x軸上的動點,EK,EQ分別切曲線M于K,Q兩點,如果|KQ|=
          4
          5
          5
          ,求線段KQ的垂直平分線方程;
          ②若E點在△ABC邊上運動,EK,EQ分別切曲線M于K,Q兩點,求四邊形DKEQ的面積的取值范圍.

          查看答案和解析>>


          同步練習冊答案