日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)質(zhì)量為M的圓環(huán)用細線(質(zhì)量不計)懸掛著,將兩個質(zhì)量均為m的有孔小珠套在此環(huán)上且可以在環(huán)上做無摩擦的滑動,如圖所示,今同時將兩個小珠從環(huán)的頂部釋放,并沿相反方向自由滑下,試求:
          (1)在圓環(huán)不動的條件下,懸線中的張力T隨cosθ(θ為小珠和大環(huán)圓心連線與豎直方向的夾角)變化的函數(shù)關(guān)系,并求出張力T的極小值及相應(yīng)的cosθ值;
          (2)小珠與圓環(huán)的質(zhì)量比
          mM
          至少為多大時圓環(huán)才有可能上升?
          分析:(1)對其中任一小珠研究,根據(jù)機械能守恒求得速度與θ的關(guān)系式,小珠做圓周運動,指向圓心的合力提供向心力,根據(jù)牛頓第二定律求出小珠所受的圓環(huán)的彈力,再根據(jù)牛頓第三定律得到小珠對圓環(huán)的彈力,圓環(huán)處于靜止狀態(tài),由平衡條件求出T與θ的關(guān)系式,再根據(jù)數(shù)學知識分析極小值及相應(yīng)的cosθ值;
          (2)當圓環(huán)所受的合力向上時,有可能上升,根據(jù)上問的結(jié)果進行討論.
          解答:解:(1)設(shè)小珠和大環(huán)圓心連線與豎直方向的夾角為θ時小珠的速度大小為v.
          根據(jù)機械能守恒定律得:
            
          1
          2
          mv2
          =mgR(1-cosθ)
          設(shè)圓環(huán)對小珠的彈力大小為N,由牛頓第二定律得
            mgcosθ-N=m
          v2
          R

          對于圓環(huán),合力為零,則有
            T=Mg+2Ncosθ
          聯(lián)立以上三式得:Ncosθ=6mgcos2θ-4mgcosθ,T=Mg+6mgcos2θ-4mgcosθ 
          根據(jù)拋物線方程知,當cosθ=-
          b
          2a
          =-
          -4mg
          12mg
          =
          1
          3
          時,T有極小值,極小值為Tmin=Mg-
          2
          3
          mg

          (2)由上知,Tmin=Mg-
          2
          3
          mg
          ,說明此時小珠對圓環(huán)的作用力的合力方向向上,大小為N′=
          2
          3
          mg

          當N′>Mg時,圓環(huán)將會上升,則有Tmin=Mg-
          2
          3
          mg
          <0
          解得,
          m
          M
          3
          2

          答:(1)在圓環(huán)不動的條件下,懸線中的張力T隨cosθ變化的函數(shù)關(guān)系是T=Mg+6mgcos2θ-4mgcosθ,張力T的極小值是Mg-
          2
          3
          mg
          ,相應(yīng)的cosθ值是
          1
          3
          ;
          (2)小珠與圓環(huán)的質(zhì)量比
          m
          M
          至少為
          2
          3
          時圓環(huán)才有可能上升.
          點評:本題運用機械能守恒、圓周運動、力平衡條件結(jié)合推導出T的表達式,再根據(jù)數(shù)學知識求解T的極小值.
          練習冊系列答案
          相關(guān)習題

          科目:高中物理 來源: 題型:

          質(zhì)量為M的圓環(huán)用細線(質(zhì)量不計)懸掛著,將兩個質(zhì)量均為m的有孔小珠套在此環(huán)上且可以在環(huán)上做無摩擦的滑動,如圖所示,今同時將兩個小珠從環(huán)的頂部釋放,并沿相反方向自由滑下,試求:

          (1)在圓環(huán)不動的條件下,懸線中的張力T隨cosθ(θ為小珠和大環(huán)圓心連線與豎直方向的夾角)變化的函數(shù)關(guān)系,并求出張力T的極小值及相應(yīng)的cosθ值;

          (2)小球與圓環(huán)的質(zhì)量比至少為多大時圓環(huán)才有可能上升?

          查看答案和解析>>

          科目:高中物理 來源: 題型:

          質(zhì)量為M的圓環(huán)用細線(質(zhì)量不計)懸掛著,將兩個質(zhì)量均為m的有孔小珠套在此環(huán)上,且可以在環(huán)上做無摩擦的滑動,如圖所示,今同時將兩個小珠從環(huán)的頂部釋放,并沿相反方向自由滑下,試求:

          (1)在圓環(huán)不動的條件下,懸線中的張力T隨cosθ變化的函數(shù)關(guān)系,并求出張力T的極小值及相應(yīng)的角θ(θ為小珠與圓環(huán)圓心連線與豎直方向的夾角)

          (2)小球與圓環(huán)的質(zhì)量比m/M至少為多大時圓環(huán)才有可能上升?

          查看答案和解析>>

          科目:高中物理 來源:2013屆天津市新華中學高三第三次月考物理試卷(帶解析) 題型:計算題

          質(zhì)量為M的圓環(huán)用細線(質(zhì)量不計)懸掛著,將兩個質(zhì)量均為m的有孔小珠套在此環(huán)上且可以在環(huán)上做無摩擦的滑動,如圖所示,今同時將兩個小珠從環(huán)的頂部釋放,并沿相反方向自由滑下,試求:

          (1)在圓環(huán)不動的條件下,懸線中的張力T隨為小珠和大環(huán)圓心連線與豎直方向的夾角)變化的函數(shù)關(guān)系,并求出張力T的極小值及相應(yīng)的值;
          (2)小珠與圓環(huán)的質(zhì)量比至少為多大時圓環(huán)才有可能上升?

          查看答案和解析>>

          科目:高中物理 來源:2011-2012學年天津市新華中學高三(上)第二次月考物理試卷(解析版) 題型:解答題

          質(zhì)量為M的圓環(huán)用細線(質(zhì)量不計)懸掛著,將兩個質(zhì)量均為m的有孔小珠套在此環(huán)上且可以在環(huán)上做無摩擦的滑動,如圖所示,今同時將兩個小珠從環(huán)的頂部釋放,并沿相反方向自由滑下,試求:
          (1)在圓環(huán)不動的條件下,懸線中的張力T隨cosθ(θ為小珠和大環(huán)圓心連線與豎直方向的夾角)變化的函數(shù)關(guān)系,并求出張力T的極小值及相應(yīng)的cosθ值;
          (2)小珠與圓環(huán)的質(zhì)量比至少為多大時圓環(huán)才有可能上升?

          查看答案和解析>>

          同步練習冊答案