日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(2017·衢州調(diào)研)已知四棱錐PABCD的底面ABCD是菱形,∠ADC120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,NPC的中點(diǎn).

          (1)求證:平面MPB⊥平面PBC;

          (2)MPMC,求直線BN與平面PMC所成角的正弦值.

          【答案】(1)見解析(2

          【解析】試題分析:(1)根據(jù)菱形性質(zhì)得MBBC,再根據(jù)射影定義得PM⊥平面ABCD ,即得PMBC ,由線面垂直判定定理得BC⊥平面PMB,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解平面PMC法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)線面角與向量夾角互余關(guān)系求直線BN與平面PMC所成角的正弦值.

          試題解析: (1)證明 ∵四邊形ABCD是菱形,∠ADC120°,

          MAD的中點(diǎn),∴MBAD,MBBC.

          又∵P在底面ABCD的射影MAD的中點(diǎn),

          PM⊥平面ABCD

          又∵BC平面ABCD,PMBC

          PMMBM,PM,MB平面PMB,

          BC⊥平面PMB,又BC平面PBC

          ∴平面MPB⊥平面PBC.

          (2)解 法一 過點(diǎn)BBHMC,連接HN

          PM⊥平面ABCD,BH平面ABCD,BHPM,

          又∵PM,MC平面PMCPMMCM,

          BH⊥平面PMC,

          HN為直線BN在平面PMC上的射影,

          ∴∠BNH為直線BN與平面PMC所成的角,

          在菱形ABCD中,設(shè)AB2a,則MBAB·sin 60°a,

          MCa.

          又由(1)MBBC

          ∴在MBC中,BHa

          (1)BC⊥平面PMB,PB平面PMB

          PBBC,BNPCa

          sinBNH.

          法二 由(1)MA,MB,MP兩兩互相垂直,以M為坐標(biāo)原點(diǎn),以MA,MB,MP所在直線為x軸、y軸、z軸建立如圖所示的空間直角坐標(biāo)系Mxyz,不妨設(shè)MA1,

          M(00,0),A(10,0)B(0,0),P(0,0,),C(2,0)

          NPC的中點(diǎn),∴N,

          設(shè)平面PMC的法向量為n(x0y0,z0),

          又∵(0,0,),(2,0),

          y01,則n|n|,

          又∵,||

          |cos,n|.

          所以,直線BN與平面PMC所成角的正弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是1,2兩組各7名同學(xué)體重(單位:kg)數(shù)據(jù)的莖葉圖.設(shè)12兩組數(shù)據(jù)的平均數(shù)依次為12,標(biāo)準(zhǔn)差依次為s1s2,那么( )

          (注:標(biāo)準(zhǔn)差,其中x1,x2,,xn的平均數(shù))

          A.12,s1s2

          B.12s1s2

          C.12,s1s2

          D.12,s1s2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)等比數(shù)列a1,a2,a3,a4的公比為q,等差數(shù)列b1,b2,b3b4的公差為d,且.記i12,34).

          1)求證:數(shù)列不是等差數(shù)列;

          2設(shè), .若數(shù)列是等比數(shù)列,求b2關(guān)于d的函數(shù)關(guān)系式及其定義域;

          3)數(shù)列能否為等比數(shù)列?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校從高一年級(jí)參加期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(滿分為100分),將數(shù)學(xué)成績(jī)進(jìn)行分組,并根據(jù)各組人數(shù)制成如下頻率分布表:

          (1)寫出的值,并估計(jì)本次考試全年級(jí)學(xué)生的數(shù)學(xué)平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)現(xiàn)從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選出兩名同學(xué),從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選一名同學(xué),共三名同學(xué)參加學(xué)習(xí)習(xí)慣問卷調(diào)查活動(dòng).若同學(xué)的數(shù)學(xué)成績(jī)?yōu)?3分,同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>分,求兩同學(xué)恰好都被選出的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體的棱長(zhǎng)為2,分別為棱、上的點(diǎn),且與頂點(diǎn)不重合.

          1)若直線相交于點(diǎn),求證:、、三點(diǎn)共線;

          2)若、分別為、的中點(diǎn).

          (。┣笞C:幾何體為棱臺(tái);

          (ⅱ)求棱臺(tái)的體積.

          (附:棱臺(tái)的體積公式,其中、分別為棱臺(tái)上下底面積,為棱臺(tái)的高)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

          (1)求拋物線的方程;

          (2)若直線的斜率之積為,求證:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某音樂院校舉行“校園之星”評(píng)選活動(dòng),評(píng)委由本校全體學(xué)生組成,對(duì)兩位選手,隨機(jī)調(diào)查了20個(gè)學(xué)生的評(píng)分,得到下面的莖葉圖:

          所得分?jǐn)?shù)

          低于60分

          60分到79分

          不低于80分

          分流方向

          淘汰出局

          復(fù)賽待選

          直接晉級(jí)

          (1)通過莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

          (2)舉辦方將會(huì)根據(jù)評(píng)分結(jié)果對(duì)選手進(jìn)行三向分流,根據(jù)所得分?jǐn)?shù),估計(jì)兩位選手中哪位選手直接晉級(jí)的概率更大,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知方程(2λx-(1λy232λ)=0與點(diǎn)P(-2,2.

          1)證明:對(duì)任意的實(shí)數(shù)λ,該方程都表示直線,且這些直線都經(jīng)過同一定點(diǎn),并求出這一定點(diǎn)的坐標(biāo);

          2)證明:該方程表示的直線與點(diǎn)P的距離d小于.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校某班在一次數(shù)學(xué)測(cè)驗(yàn)中,全班N名學(xué)生的數(shù)學(xué)成績(jī)的頻率分布直方圖如下,已知分?jǐn)?shù)在110~120的學(xué)生有14人.

          (1)求總?cè)藬?shù)N和分?jǐn)?shù)在120~125的人數(shù)n;

          (2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)和中位數(shù)各是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案