日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知兩點(diǎn)A(﹣20)、B2,0),動(dòng)點(diǎn)P滿足

          1)求動(dòng)點(diǎn)P的軌跡Ω的方程;

          2)若橢圓上點(diǎn)(x0,y0)處的切線方程是

          ①過直線lx4上一點(diǎn)MΩ的兩條切線,切點(diǎn)分別是PQ,求證:直線PQ恒過定點(diǎn)N

          ②是否存在實(shí)數(shù)λ,使得|PN|+|QN|λ|PN||QN|?若存在,求出λ的值;若不存在,說明理由.

          【答案】1y≠0);(2)①見解析②存在,

          【解析】

          (1)設(shè),再根據(jù)斜率之積列式求解即可.

          (2)①根據(jù)題中所給的切線方程,設(shè),進(jìn)而求得過的切線方程,再代入坐標(biāo)即可求得的直線方程,再分析定點(diǎn)即可.

          ②由①有,代入橢圓方程求得交點(diǎn)關(guān)于縱坐標(biāo)的韋達(dá)定理,進(jìn)而表達(dá)出的關(guān)系式,再化簡(jiǎn)求解即可.

          1)設(shè)Px,y),由題意kPAkPB,整理得:y≠0),

          所以動(dòng)點(diǎn)P的軌跡Ω的方程:y≠0);

          2)①設(shè)切點(diǎn)Px1,y1),Qx2,y2),由題意設(shè)M4,t),則切線方程分別是:,1,

          因?yàn)閮蓷l切線過M點(diǎn),則x11,x21,

          P,Q的坐標(biāo)滿足方程:xy1,而兩點(diǎn)確定唯一的直線,

          所以直線PQ的方程:xy1,

          顯然對(duì)任意的t值,點(diǎn)(1,0)都適合,

          所以直線PQ恒過定點(diǎn)N1,0);

          ②將直線PQ方程:xy+1代入橢圓中整理得:312+4y2120,

          即(12+t2y26ty270

          y1+y2,y1y2,設(shè)y10,y20,

          因?yàn)?/span>|PN|y1,

          同理|QN|,

          所以

          .

          |PN|+|QN||PN||QN|

          故存在實(shí)數(shù),使得|PN|+|QN|λ|PN||QN|恒成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

          A. P(Y≥μ2)≥P(Y≥μ1)

          B. P(X≤σ2)≤P(X≤σ1)

          C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

          D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

          (1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          (2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

          2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).

          (Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

          (Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn),兩點(diǎn)的距離之積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

          1)求圖中x的值;

          2)求這組數(shù)據(jù)的中位數(shù);

          3)現(xiàn)從被調(diào)查的問卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知實(shí)數(shù),設(shè)函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)對(duì)任意均有的取值范圍.

          注:為自然對(duì)數(shù)的底數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

          組號(hào)

          分組

          頻數(shù)

          頻率

          第1組

          5

          0.05

          第2組

          a

          0.35

          第3組

          30

          b

          第4組

          20

          0.20

          第5組

          10

          0.10

          合計(jì)

          n

          1.00

          (1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

          (2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢(mèng)溪筆談》中首創(chuàng),南宋科學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、三角垛等等,某倉(cāng)庫中部分貨物堆放成“菱草垛”,自上而下,第一層1件,以后每一層比上一層多1件,最后一層是件,已知第一層貨物單價(jià)1萬元,從第二層起,貨物的單價(jià)是上一層單價(jià)的,若這堆貨物總價(jià)是萬元,則的值為________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案