【題目】已知是二次函數(shù),不等式
<0的解集是(0,5),且
在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式.
(2)作出二次函數(shù)y=在
[-1,4]上的圖像并求出值域.
【答案】(1); (2)見解析,值域為
.
【解析】
(1)設二次函數(shù)的解析式為,根據(jù)題意,得到
,
且,列出方程組,求得
的值,即可得到函數(shù)的解析式;
(2)由函數(shù),結合二次函數(shù)的圖象與性質,得出函數(shù)的圖象,進而求得函數(shù)的值域。
(1)設二次函數(shù)的解析式為,
因為不等式的解集是
,所以
,且
,
所以函數(shù)的對稱軸的方程為
,
又由函數(shù)在
上的最大值為
,即
,
所以,解得
,
即函數(shù)的解析式為
。
(2)由題意,可得函數(shù),
函數(shù)的圖象如圖所示,
由圖象可得,函數(shù)的最小為,最大值為
,
所以函數(shù)的值域為
。
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的極坐標方程為
,曲線
的參數(shù)方程為
(
為參數(shù))
(Ⅰ)求直線的直角坐標方程和曲線
的普通方程;
(Ⅱ)若過且與直線
垂直的直線
與曲線
相交于兩點
,
,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如圖所示.據(jù)此解答如下問題:
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)根據(jù)莖葉圖和頻率分布直方圖估計這次測試的平均分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點
的動直線
相交于
點,與橢圓
分別交于
與
不同四點,直線
的斜率
滿足
.已知當
與
軸重合時,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得
為定值?若存在,求出
點坐標并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)
,
和
.
【解析】試題分析:(1)當與
軸重合時,
垂直于
軸,得
,得
,
從而得橢圓的方程;(2)由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,所以把
坐標化,可得
點的軌跡是橢圓,從而求得定點
和點
.
試題解析:當
與
軸重合時,
, 即
,所以
垂直于
軸,得
,
,, 得
,
橢圓
的方程為
.
焦點
坐標分別為
, 當直線
或
斜率不存在時,
點坐標為
或
;
當直線斜率存在時,設斜率分別為
, 設
由
, 得:
, 所以:
,
, 則:
. 同理:
, 因為
, 所以
, 即
, 由題意知
, 所以
, 設
,則
,即
,由當直線
或
斜率不存在時,
點坐標為
或
也滿足此方程,所以點
在橢圓
上.存在點
和點
,使得
為定值,定值為
.
考點:圓錐曲線的定義,性質,方程.
【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,
,得
,
,從而得橢圓的方程,第二問由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發(fā),把
坐標化,求得
點的軌跡方程是橢圓
,從而求得存在兩定點
和點
.
【題型】解答題
【結束】
21
【題目】已知,
,
.
(Ⅰ)若,求
的極值;
(Ⅱ)若函數(shù)的兩個零點為
,記
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某實驗室一天的溫度(單位:)隨時間
(單位:
)的變化近似滿足函數(shù)關系:
.
(Ⅰ)求實驗室這一天的最大溫差;
(Ⅱ)若要求實驗室溫度不高于,則在哪段時間實驗室需要降溫?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
的單調區(qū)間;
(2)若不等式對任意的正實數(shù)
都成立,求實數(shù)
的最大整數(shù);
(3)當時,若存在實數(shù)
且
,使得
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com