日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,點在橢圓.

          )求橢圓的方程;

          )設(shè)為原點,過原點的直線(不與軸垂直)與橢圓交于、兩點,直線軸分別交于點、.問:軸上是否存在定點,使得?若存在,求點的坐標(biāo);若不存在,說明理由.

          【答案】;()存在,點的坐標(biāo)為.

          【解析】

          )利用橢圓的離心率結(jié)合,求出,得到橢圓方程;

          )設(shè),由題意及橢圓的對稱性可知,求出、的方程,求出、的坐標(biāo),假設(shè)存在定點使得,得到,求出,即可說明存在點坐標(biāo)為滿足條件.

          )由題意得,解得,所以,橢圓的方程為

          )設(shè),由題意及橢圓的對稱性可知

          則直線的方程為,直線的方程為,

          點坐標(biāo)為,點坐標(biāo)為.

          假設(shè)存在定點使得

          (也可以轉(zhuǎn)化為斜率來求),

          ,即,即,所以

          所以存在點坐標(biāo)為滿足條件.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正三棱柱中,,DE,F分別為線段,的中點.

          1)證明:平面

          2)證明:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.

          1)若某日播報的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

          2)如圖是月份天的的頻率分布直方圖,月份僅有內(nèi).

          ①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;

          ②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進(jìn)行研究,求抽取的這兩天中值都在的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直三棱柱中,,,點,分別是棱,的中點.

          1)求證:平面;

          2)求證:直線平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)求函數(shù)的單調(diào)增區(qū)間;

          2)函數(shù),當(dāng)時,恒成立,求整數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的短軸長為2,離心率.過橢圓的右焦點作直線l(不與軸重合)與橢圓交于不同的兩點,.

          1)求橢圓的方程;

          2)試問在軸上是否存在定點,使得直線與直線恰好關(guān)于軸對稱?若存在,求出點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,點為曲線上的動點,點在線段的延長線上且滿足的軌跡為.

          1)求曲線的極坐標(biāo)方程;

          2)設(shè)點的極坐標(biāo)為,求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體中,平面平面,,,.

          1)求多面體的體積;

          2)已知是棱的中點,在棱是否存在點使得,若存在,請確定點的位置;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定合格”“不合格兩個等級,同時對相應(yīng)等級進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:

          等級

          不合格

          合格

          得分

          頻數(shù)

          6

          a

          24

          b

          1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);

          2)其他條件不變在評定等級為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;

          3)用分層抽樣的方法,從評定等級為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案