日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設函數(shù)f(x)=x(x-1)(x-a)(a>1).

          (1)求導數(shù)f′(x),并證明f(x)有兩個不同的極值點x1、x2;

          (2)若不等式f(x1)+f(x2)≤0成立,求a的取值范圍.

          解:(1)f′(x)=3x2-2(1+a)x+a.

              令f′(x)=0得方程3x2-2(1+a)x+a=0.

              因Δ=4(a2-a+1)≥4a>0,

              故方程有兩個不同實根x1、x2.

              不妨設x1<x2,由f′(x)=3(x-x1)(x-x2)可判斷f′(x)的符號如下:

              當x<x1時,f′(x)>0;

              當x1<x<x2時,f′(x)<0;

              當x>x2時,f′(x)>0.

              因此x1是極大值點,x2是極小值點.

              (2)因f(x1)+f(x2)≤0,故得不等式

              x13+x23-(1+a)(x12+x22)+a(x1+x2)≤0,

              即(x1+x2)[(x1+x2)2-3x1x2]-(1+a)[(x1+x2)2-2x1x2]+a(x1+x2)≤0.

              又由(1)知.

              代入前面不等式,兩邊除以(1+a),

              并化簡得2a2-5a+2≥0.

              解不等式得a≥2或a≤(舍去).

              因此,當a≥2時,不等式f(x1)+f(x2)≤0成立.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=p(x-
          1
          x
          )-2lnx,g(x)=
          2e
          x
          (p是實數(shù),e為自然對數(shù)的底數(shù))
          (1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
          (2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(1,0),求p的值;
          (3)若在[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求p的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列三個命題:
          ①函數(shù)f(x)=(
          12
          )x
          為R上的l高調(diào)函數(shù);
          ②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
          ③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍[2,+∞);
          其中正確的命題是
          ②③
          ②③
          (填序號)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
          ④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源:徐州模擬 題型:解答題

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案