日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
          ④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數(shù)為( 。
          分析:①因為函數(shù)f(x)是定義在R上的偶函數(shù),所以f(-
          3
          4
          )=f(
          3
          4
          )
          ;又因為對于任意的x等式f(x+2)=f(x)恒成立,所以
          f(
          15
          2
          )可化為f(
          1
          2
          ),因為
          1
          2
          3
          4
          都在[0,1]上,所以可以比較f(
          3
          4
          )與f(
          1
          2
          )
          大小,通過計算可得f(
          1
          2
          )>f(
          3
          4
          )
          .故可知①正確.
          ②當x∈[-1,0]時,則-x∈[0,1],于是f(x)=f(-x)=(-x)3-4(-x)+3=-x3+4x+3≠x3+4x+3.故可知②不正確.
          ③因為f(x)=3x2-4,所以當x∈[0,1]時,可知f(x)在x∈[0,1]上單調(diào)遞減.又因為f(0)=3,f(1)=0,所以
          f(x)=0在x∈[0,1]時只有一個根1;同時,因為f(x)是偶函數(shù),所以f(x)在x∈[-1,0]上亦有且只有一個根-1,又因為對于任意的x等式f(x+2)=f(x)恒成立,所以有f(1)=f(3)=f(5)=…
          故f(x)(x≥0)的圖象與x軸的交點的橫坐標為:1,3,5,….從而可判斷出③正確.
          ④由③可知f(x)在x∈[0,1]上單調(diào)遞減,且0≤f(x)≤3,則函數(shù)y=f(x)與y=|x|的圖象在x∈[0,1]上有且只有有一個交點,即方程f(x)=|x|在x∈[0,1]上有且只有一個根,設為x1.由于函數(shù)f(x)是定義在R上的偶函數(shù),所以f(-x1)=f(x1)=|-x1|,即-x1也是方程f(x)=|x|的一個根,這就是說:方程f(x)=|x|在x∈[-1,1]上有且只有兩個根x1,-x1.同理,方程f(x)=|x|分別在x∈[1,2]、[2,3]上各有一個根,設為x2,x3;易知,方程f(x)=|x|分別在x∈[-2,-1]、[-3,-2]上亦各有一個根,且為-x2,-x3.在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|無根.綜上可知:方程f(x)=|x|在x∈[-3,4]上共有6個根.因此④不正確.
          解答:解:①∵函數(shù)f(x)是定義在R上的偶函數(shù),∴f(-
          3
          4
          )=f(
          3
          4
          )
          =(
          3
          4
          )3-4×
          3
          4
          +3
          =
          27
          64

          又∵對于任意的x等式f(x+2)=f(x)恒成立,
          ∴f(
          15
          2
          )=f(6+
          3
          2
          )=f(
          3
          2
          )=f(2-
          1
          2
          )=f(-
          1
          2
          )=f(
          1
          2
          )=(
          1
          2
          )3-4×
          1
          2
          +3
          =
          1
          8
          +1
          >f(-
          3
          4
          ).
          故可知①正確.
          ②當x∈[-1,0]時,則-x∈[0,1],于是f(x)=f(-x)=(-x)3-4(-x)+3=-x3+4x+3≠x3+4x+3.
          故可知②不正確.
          ③因為f(x)=3x2-4,所以當x∈[0,1]時,恒有f(x)<0成立,故f(x)在x∈[0,1]時單調(diào)遞減.
          又因為f(0)=3,f(1)=0,所以f(x)=0在x∈[0,1]時有且只有一個根1;同理f(x)=0在x∈[-1,0]上有且只有一個根-1.
          又因為對于任意的x等式f(x+2)=f(x)恒成立,所以有f(-1)=f(1)=f(3)=f(5)=…;
          故f(x)(x≥0)的圖象與x軸的交點的橫坐標為:1,3,5,….是由小到大構(gòu)成一個無窮等差數(shù)列{2n-1}.
          故③正確.
          ④由③可知f(x)在x∈[0,1]時單調(diào)遞減,且0≤f(x)≤3,
          則函數(shù)y=f(x)與y=|x|的圖象在x∈[0,1]上有且只有有一個交點,即方程f(x)=|x|在x∈[0,1]上有且只有一個根,設為x1
          由于函數(shù)f(x)是定義在R上的偶函數(shù),所以f(-x1)=f(x1)=|-x1|,即-x1也是方程f(x)=|x|的一個根.
          同理,方程f(x)=|x|分別在x∈[1,2]、[2,3]上各有一個根,設為x2,x3;易知,方程f(x)=|x|分別在x∈[-2,-1]、[-3,-2]上亦各有一個根,且為-x2,-x3
          在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|無根.
          綜上可知:方程f(x)=|x|在x∈[-3,4]上共有6個根.因此④不正確.
          綜上可知①、③正確.
          點評:此題綜合考查了函數(shù)的單調(diào)性、奇偶性、周期性及方程的根,等差數(shù)列等知識;還考查了數(shù)形結(jié)合的思想方法.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
          1
          3
          )=1

          (1)求f(
          1
          9
          )
          ;
          (2)若f(x)+f(2-x)<2,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當x∈[-1,0)時,f(x)=x3-ax(a∈R).
          (1)當x∈(0,1]時,求f(x)的解析式;
          (2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
          (3)是否存在a,使得當x∈(0,1]時,f(x)有最大值1?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
          0
          0

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在R上的偶函數(shù).若當x≥0時,f(x)=
          |1-
          1
          x
          0
          x>0;,
          x=0.

          (1)求f(x)在(-∞,0)上的解析式.
          (2)請你作出函數(shù)f(x)的大致圖象.
          (3)當0<a<b時,若f(a)=f(b),求ab的取值范圍.
          (4)若關于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解,求b,c滿足的條件.

          查看答案和解析>>

          同步練習冊答案