【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時,有不等式f(x)≥ 恒成立,求實數(shù)k的取值范圍.
【答案】
(1)解:易知f(x)定義域為(0,+∞), ,令f'(x)=0,得x=1.
當0<x<1時,f'(x)>0;當x>1時,f'(x)<0.
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù)
(2)解:∵g(x)=1+lnx+mx, ,x∈(0,e],
①若m≥0,則g'(x)≥0,從而g(x)在(0,e]上是增函數(shù),∴g(x)max=g(e)=me+2≥0,不合題意.
②若m<0,則由g'(x)>0,即 ,若
,g(x)在(0,e]上是增函數(shù),
由①知不合題意.
由g'(x)<0,即 .
從而g(x)在 上是增函數(shù),在
為減函數(shù),
∴ ,令ln(
)=﹣3,所以m=﹣e3,
∵ ,∴所求的m=﹣e3
(3)解:∵x≥1時, 恒成立,∴
,
令 ,
∴ 恒大于0,
∴h(x)在[1,+∞)為增函數(shù),
∴h(x)min=h(1)=2,∴k≤2
【解析】(1)求出函數(shù)的定義域,函數(shù)的導數(shù),求出極值點,判斷導函數(shù)符號,然后求解單調(diào)區(qū)間.(2)求出 ,x∈(0,e],通過①若m≥0,②若m<0,判斷函數(shù)的單調(diào)性,求解函數(shù)的最值,然后求m.(3)利用x≥1時,
恒成立,分離變量,構造函數(shù)
,利用函數(shù)的導數(shù),求解函數(shù)的最值,推出結果即可.
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是( )
A. “若x>1,則2x>1”的否命題為真命題
B. “若cosβ=1,則sinβ=0”的逆命題是真命題
C. “若平面向量a,b共線,則a,b方向相同”的逆否命題為假命題
D. 命題“若x>1,則x>a”的逆命題為真命題,則a>0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的通項公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項和Sn
(2)設bn=anan+1 , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,且以原點為圓心,橢圓的焦距為直徑的圓與直線
相切(
為常數(shù)).
(1)求橢圓的標準方程;
(2)如圖,若橢圓的左、右焦點分別為
,過
作直線
與橢圓分別交于兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以長方體的八個頂點中的兩點為起點和終點的向量中.
(1)單位向量共有多少個?
(2)試寫出模為的所有向量.
(3)試寫出與相等的所有向量.
(4)試寫出的相反向量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:
(1)求證:AB⊥CD;
(2)若M為AD的中點,求二面角A﹣BM﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com