日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:x2+y2-2x+4y-4=0,問:是否存在斜率為1的直線l被圓C截得弦AB,且以AB為直徑的圓恰好過原點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          答案:
          解析:

            解:假設(shè)存在k=1的直線l,使它被圓C截出弦AB,且以AB為直徑的圓過原點(diǎn),則OA⊥OB.設(shè)l的方程為y=x+b,A(x1,y1),B(x2,y2).由得2x2+(2b+2)x+b2+4b-4=0.∵l與圓C交于兩點(diǎn),∴Δ>0,即(2b+2)2-8(b2+4b-4)>0.∴b2+6b-9<0,即①.而x1+x2=-b-1,x1·x2,∴y1·y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2-b2-b+b2.據(jù)OA⊥OB,∴x1x2+y1y2=0,即b2+3b-4=0.解之,得b=1或b=-4,而b=1或b=-4均滿足①.

            ∴存在直線l:y=x+1或y=x-4使它被圓截得弦AB,且以AB為直徑的圓過原點(diǎn)O.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2-8x+y2-9=0,過點(diǎn)M(1,3)作直線交圓C于A,B兩點(diǎn),△ABC面積的最大值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2-2ax+y2-10y+a2=0(a>0)截直線x+y-5=0的弦長(zhǎng)為5
          2
          ;
          (1)求a的值;
          (2)求過點(diǎn)P(10,15)的圓的切線所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2-2x+y2-2=0,點(diǎn)A(-2,0)及點(diǎn)B(4,a),從A點(diǎn)觀察B點(diǎn),要使視線不被圓C擋住,則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2-2x+y2=0,直線l:x+y-4=0.
          (1)若直線l′⊥l且被圓C截得的弦長(zhǎng)為
          3
          ,求直線l′的方程;
          (2)若點(diǎn)P是直線l上的動(dòng)點(diǎn),PA、PB與圓C相切于點(diǎn)A、B,求四邊形PACB面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2-2ax+y2-4y+a2=0(a>0)及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長(zhǎng)為2
          2
          時(shí).
          (Ⅰ)求a的值;
          (Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案