日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知動點與點的距離和它到直線的距離的比是.

          (1)求動點的軌跡的方程;

          (2)已知定點,是軌跡上兩個不同動點,直線,的斜率分別為,,試判斷直線的斜率是否為定值,并說明理由.

          【答案】(1);(2)斜率為定值,該值為1.

          【解析】

          (1)由動點與點的距離和它到直線的距離的比是,可得方程,化簡可得的軌跡的方程;

          (2)設(shè)直線的斜率為,則直線的斜率為,可得所以直線的方程為,直線的方程為. 設(shè)點,,由因為點在橢圓上,可得的值,的值,可得直線的斜率為定值.

          解:(1)設(shè)是點到直線的距離,依題意可得,

          的軌跡就是集合:,

          由此得

          將上式兩邊平方,并化簡得

          即點的軌跡方程是.

          (2)因為,

          設(shè)直線的斜率為,則直線的斜率為.

          所以直線的方程為,

          直線的方程為.

          設(shè)點,,由,

          (1)

          因為點在橢圓上,所以是方程(1)的一個根,

          所以.

          同理,所以.

          ,

          所以直線的斜率

          所以直線的斜率為定值,該值為1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是一個纜車示意圖,該纜車的半徑為4.8 m,圓上最低點與地面的距離為0.8 m,纜車每60 s轉(zhuǎn)動一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時針轉(zhuǎn)動θ角到OB,設(shè)B點與地面的距離為h m.

          (1)求h與θ之間的函數(shù)解析式;

          (2)設(shè)從OA開始轉(zhuǎn)動,經(jīng)過t s達到OB,求h與t之間的函數(shù)解析式,并計算經(jīng)過45 s后纜車距離地面的高度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】半期考試后,班長小王統(tǒng)計了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.

          根據(jù)頻率分布直方圖,估計這50名同學(xué)的數(shù)學(xué)平均成績;

          用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點為圓外一點,若圓上存在一點,使得,則正數(shù)的取值范圍是____________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點都在軸上方),且.

          (1)求橢圓的方程;

          (2)當(dāng)為橢圓與軸正半軸的交點時,求直線方程;

          (3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】閱讀如圖所示的程序框圖,解答下列問題:

          (1)求輸入的的值分別為時,輸出的的值;

          (2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:

          方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;

          方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與垂直)作為正四棱柱的兩個底面.

          1設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;

          2設(shè)的長為dm,則當(dāng)為多少時,能使按方案②制成的正四棱柱的體積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,的直徑,PA垂直于所在的平面,C是圓周上不同于A,B的一動點.

          1)證明:是直角三角形;

          2)若,且當(dāng)直線與平面所成角的正切值為時,求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案