日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時f(x)<0恒成立.
          (1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
          (2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;(3)解關(guān)于x的不等式
          1
          n
          f(ax2)-f(x)>
          1
          n
          f(a2x)-f(a)
          ,(n是一個給定的自然數(shù),a<0)
          分析:(1)令x=y=0求出f(0),再令x=-y即可判斷出奇偶性.
          (2)利用函數(shù)單調(diào)性的定義,設(shè)任意x1,x2∈R且x1<x2,結(jié)合已知不等式比較f(x1)和f(x2)的大小,即可判斷出單調(diào)性.
          由單調(diào)性可求出f(x)在[-3,3]上的最大值為f(-3),已知不等式可轉(zhuǎn)化為f(-3)≤6,再由已知建立f(-1)和f(-3)的聯(lián)系即可.
          (3)
          1
          n
          f(ax2)-f(x)>
          1
          n
          f(a2x)-f(a)
          ,∴f(ax2)-f(a2x)>n[f(x)-f(a)],由已知得:f[n(x-a)]=nf(x-a)∴f(ax2-a2x)>f[n(x-a)],由(2)中的單調(diào)性轉(zhuǎn)化為ax2-a2x<n(x-a).即(x-a)(ax-n)<0,按照二次不等式兩根的大小進(jìn)行分類討論解不等式即可.
          解答:解:(1)由已知對于任意x∈R,y∈R,f(x+y)=f(x)+f(y)恒成立
          令x=y=0,得f(0+0)=f(0)+f(0),∴f(0)=0
          令x=-y,得f(x-x)=f(x)+f(-x)=0
          ∴對于任意x,都有f(-x)=-f(x)∴f(x)是奇函數(shù).
          (2)設(shè)任意x1,x2∈R且x1<x2,則x2-x1>0,由已知f(x2-x1)<0(1)
          又f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)(2)
          由(1)(2)得f(x1)>f(x2),
          根據(jù)函數(shù)單調(diào)性的定義知f(x)在(-∞,+∞)上是減函數(shù).
          ∴f(x)在[-3,3]上的最大值為f(-3).
          要使f(x)≤6恒成立,當(dāng)且僅當(dāng)f(-3)≤6,
          又∵f(-3)=-f(3)=-f(2+1)=-[f(2)+f(1)]
          =-[f(1)+f(1)+f(1)]=-3f(1),∴f(1)≥-2.
          又x>1,f(x)<0,∴f(1)∈[-2,0)
          (3)
          1
          n
          f(ax2)-f(x)>
          1
          n
          f(a2x)-f(a)
          ,
          ∴f(ax2)-f(a2x)>n[f(x)-f(a)]
          ∴f(ax2-a2x)>nf(x-a),
          由已知得:f[n(x-a)]=nf(x-a)
          ∴f(ax2-a2x)>f[n(x-a)],
          ∵f(x)在(-∞,+∞)上是減函數(shù)
          ∴ax2-a2x<n(x-a).即(x-a)(ax-n)<0,
          ∵a<0,∴(x-a)(x-
          n
          a
          )>0
          ,
          討論:①當(dāng)a<
          n
          a
          <0
          ,即a<-
          n
          ,解集為:{x|x>
          n
          a
          或x<a}
          ②當(dāng)a=
          n
          a
          <0
          a=-
          n
          時,原不等式解集:{x|x≠-
          n
          }

          ③當(dāng)
          n
          a
          <a<0時,即-
          n
          <a<0時,原不等式的解集為{x|x>a或x<
          n
          a
          }
          點評:本題考查抽象函數(shù)的奇偶性和單調(diào)性的判斷和應(yīng)用:解不等式,及分類討論思想,綜合性強(qiáng),難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          b-
          2
          x
           
          2
          x+1
           
          +a
          是奇函數(shù)
          (1)a+b=
          3
          3
          ;
          (2)若函數(shù)g(x)=f(
          2x+1
          )+f(k-x)
          有兩個零點,則k的取值范圍是
          (-1,-
          1
          2
          (-1,-
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          -2x+b2x+1+a
          是奇函數(shù).
          (1)求f(x)的解析式;
          (2)用定義證明f(x)為R上的減函數(shù);
          (3)若對任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          -2x+12x+1+a
          是奇函數(shù),則a=
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義域為R的函數(shù)f(x)=
          1
          |x-2|
          ,(x≠2)
          1,(x=2)
          ,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          -2x+a2x+1
          是奇函數(shù).
          (Ⅰ)求實數(shù)a值;
          (Ⅱ)判斷并證明該函數(shù)在定義域R上的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案