日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知長(zhǎng)方體ABCD-A1B1C1D1,AB=2,AA1=1,直線BD與平面AA1B1B所成的角為30°,AE垂直BD于E,F(xiàn)為A1B1的中點(diǎn).
          (I)求異面直線AE與BF所成的角;
          (II)求平面BDF與平面AA1B所成二面角(銳角)的大小
          (III)求點(diǎn)A到平面BDF的距離.

          【答案】分析:解法一:
          在含有直線與平面垂直垂直的條件的棱柱、棱錐、棱臺(tái)中,可以建立空間直角坐標(biāo)系,設(shè)定參量求解.比如此題中,我們可以以A為坐標(biāo)原點(diǎn),分別以AB、AD、AA1為x、y、z軸,建立空間直角坐標(biāo)系O-xyz.這種解法的好處就是:①解題過(guò)程中較少用到空間幾何中判定線線、面面、線面相對(duì)位置的有關(guān)定理,因?yàn)檫@些可以用向量方法來(lái)解決.②即使立體感稍差一些的學(xué)生也可以順利解出,因?yàn)橹恍璁媯(gè)草圖以建立坐標(biāo)系和觀察有關(guān)點(diǎn)的位置即可.
          (I)∵,∴.即異面直線AE、BF所成的角為
          (II)易知平面AA1B的一個(gè)法向量.設(shè)是平面BDF的一個(gè)法向量,即平面BDF與平面AA1B所成二面角(銳角)大小為向量.
          (III)點(diǎn)A到平面BDF的距離,即在平面BDF的法向量上的投影的絕對(duì)值,所以距離
          解法二:
          (I)求異面直線所成的角,也可以做適當(dāng)?shù)钠揭,把異面直線轉(zhuǎn)化為相交直線,然后在相關(guān)的三角形中借助正弦或余弦定理解出所求的角.平移時(shí)主要是根據(jù)中位線和中點(diǎn)條件,或者是特殊的四邊形,三角形等.連接B1D1,過(guò)F作B1D1的垂線,垂足為K,則FK∥AE.∴∠BFK為異面直線BF與AE所成的角.
          (II)二面角的度量關(guān)鍵在于找出它的平面角,構(gòu)造平面角常用的方法就是三垂線法.由于DA⊥面AA2B,由A作BF的垂線AG,垂足為G,連接DG,由三垂線定理知BG⊥DG.∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角.
          (III)在立體幾何中,求點(diǎn)到平面的距離是一個(gè)常見的題型,同時(shí)求直線到平面的距離、平行平面間的距離及多面體的體積也常轉(zhuǎn)化為求點(diǎn)到平面的距離.找(作)出一個(gè)過(guò)該點(diǎn)的平面與已知平面垂直,然后過(guò)該點(diǎn)作其交線的垂線,則得點(diǎn)到平面的垂線段.由(II)知平面AFD是平面BDF與平面AA1B所成二面確的平面角所在的平面∴面AFD⊥面BDF.在Rt△ADF,由A作AH⊥DF于H,則AH即為點(diǎn)A到平面BDF的距離.
          解答:解:法一:在長(zhǎng)方體ABCD-A1B1C1D1中,以AB所在直線為x軸,AD所在直線為y
          軸,AA1所在直線為z軸建立空間直角坐標(biāo)系如圖.
          由已知AB=2,AA1=1,可得A(0,0,0),B(2,0,0),F(xiàn)(1,0,1).
          又AD⊥平面AA1B1B,從而BD與平面AA1B1B所成的角即為∠DBA=30°,
          ,
          從而易得
          (I)∵
          =
          即異面直線AE、B所成的角為.]
          (II)易知平面AA1B的一個(gè)法向量
          設(shè)是平面BDF的一個(gè)法向量,
          ,
          ,∴
          即平面BDF與平面AA1B所成二面角(銳角)大小為
          (III)點(diǎn)A到平面BDF的距離,即在平面BDF的法向量上的投影的絕對(duì)值,
          所以距離

          所以點(diǎn)A到平面BDF的距離為
          解法二:(I)連接B1D1,過(guò)F作B1D1的垂線,
          垂足為K,∵BB1與兩底面ABCD,A1B1C1D1都垂直,
          平面BDD1B1,
          平面BDD1B1,
          因此FK∥AE.∴∠BFK為異面直線BF與AE所成的角.
          連接BK,由FK⊥面BDD1B1得FK⊥BK,
          從而△BKF為Rt△.
          在Rt△B1KF和Rt△B1D1A1中,


          ,∴
          ∴異面直線BF與AE所成的角為
          (II)由于DA⊥面AA2B,由A作BF的垂線AG,垂足為G,
          連接DG,由三垂線定理知BG⊥DG.
          ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角,
          且∠DAG=90°,在平面AA1B中,延長(zhǎng)BF與AA1交于
          點(diǎn)S,∵F為A2B1的中點(diǎn),A1F∥=,
          即SA=2A1A=2=AB,∴Rt△BAS為等腰直角三角形,
          垂足G點(diǎn)為斜邊SB的中點(diǎn)F,即F、G重合.
          易得.在Rt△BAS中,
          即平面BDF與平面AA1B所成二面角(銳角)的大小為
          (III)由(II)知平面AFD是平面BDF與平面AA1B所
          成二面確的平面角所在的平面∴面AFD⊥面BDF.
          在Rt△ADF,由A作AH⊥DF于H,則AH即為點(diǎn)
          A到平面BDF的距離.
          由AH.DF=AD.AF,

          所以點(diǎn)A到平面BDF的距離為
          點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、面面關(guān)系、二面角的度量、點(diǎn)到面的距離計(jì)算,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知長(zhǎng)方體ABCD-A1B1C1D1,AB=2,AA1=1,直線BD與平面AA1B1B所成的角為30°,AE垂直BD于E,F(xiàn)為A1B1的中點(diǎn).
          (I)求異面直線AE與BF所成的角;
          (II)求平面BDF與平面AA1B所成二面角(銳角)的大小
          (III)求點(diǎn)A到平面BDF的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=2
          3
          ,AD=2
          3
          ,AA1=2.
          求:
          ①BC和A1C1所成的角度是多少度?
          ②AA1和B1C1所成的角是多少度?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,點(diǎn)O是線段BC1的中點(diǎn),點(diǎn)M是OD的中點(diǎn),點(diǎn)E是線段AB上一點(diǎn),AE>BE,且A1E⊥OE.
          ①求AE的長(zhǎng);
          ②求二面角A1-DE-C的正切值;
          ③求三棱錐M-A1OE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知長(zhǎng)方體ABCD-A′B′C′D′中,AB=2
          3
          ,AD=2
          3
          ,AA′=2,
          (1)哪些棱所在直線與直線BA’是異面直線?
          (2)直線BC與直線A’C’所成角是多少度?
          (3)哪些棱所在直線與直線AA’是垂直?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•宣武區(qū)一模)如圖,已知長(zhǎng)方體AC1中,AB=BC=1,BB1=2,連接B1C,過(guò)B點(diǎn)作B1C的垂線交CC1于E,交B1C于F
          (1)求證:AC1⊥平面EBD;
          (2)求點(diǎn)A到平面A1B1C的距離;
          (3)求直線DE與平面A1B1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案