日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  若函數(shù)f(x)=,若f(a)>f(-a),則實數(shù)a的取值范圍是

          (A)(-1,0)∪(0,1)              (B)(-∞,-1)∪(1,+∞)  

          (C)(-1,0)∪(1,+∞)                (D)(-∞,-1)∪(0,1)

           

          【答案】

           【答案】C

          【解析】本題主要考查函數(shù)的對數(shù)的單調(diào)性、對數(shù)的基本運算及分類討論思想,屬于中等題。

          由分段函數(shù)的表達式知,需要對a的正負進行分類討論。

          【溫馨提示】分類函數(shù)不等式一般通過分類討論的方式求解,解對數(shù)不等式既要注意真數(shù)大于0,同事要注意底數(shù)在(0,1)上時,不等號的方向不要寫錯。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
          12
          (1+x2)
          ;②f(x)在R上的最小值為0.
          (1)求f(1)的值及f(x)的解析式;
          (2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
          (3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
          (1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
          (2)若函數(shù)f(x)=
          x+1
          在[1,+∞)
          上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
          (3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
          ①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
          ②方程g(x)=0的根t也是方程f(
          4
          )=
          2
          sin(
          2
          -
          π
          4
          )=-
          2
          cos
          π
          4
          =-1

          ③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖北省黃岡市武穴中學(xué)2009屆高三數(shù)學(xué)交流試題(理科) 題型:013

          函數(shù)f(x)定義在R上,常數(shù)a≠0,下列正確的命題個數(shù)是

          ①若f(a+x)=f(a-x),則函數(shù)y=f(x)的對稱軸是直線x=a

          ②函數(shù)y=f(a+x)和y=f(a-x)的對稱軸是x=0

          ③若f(a-x)=f(x-a),則函數(shù)y=f(x)的對稱軸是x=0

          ④函數(shù)y=f(x-a)和y=f(a-x)的圖象關(guān)于直線x=a對稱

          [  ]

          A.1

          B.2

          C.3

          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
          1
          2
          (1+x2)
          ;②f(x)在R上的最小值為0.
          (1)求f(1)的值及f(x)的解析式;
          (2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
          (3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          我們知道:若函數(shù)y=f(x)存在函數(shù)y=f-1(x),則原函數(shù)y=f(x)與其反函數(shù)y=f-1(x)的圖像關(guān)于直線y=x對稱;若y=f(x)與y=f-1(x)的圖像有公共點,則某些公共點也未必在直線y=x上,例如:f(x)=.

          (Ⅰ)已知y=f(x)為定義域上的增函數(shù),且y=f(x)與y=f-1(x)的圖像有公共點,求證:y=f(x)與y=f-1(x)的圖像的公共點在直線y=x上;

          (Ⅱ)設(shè)f(x)=ax(a>1),試討論f(x)與f-1(x)的圖像的公共點的個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案