日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

          (1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

          (2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

          【答案】(1) 8;(2)1.6.

          【解析】試題分析:(1)根據(jù)題中條件每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間 (單位:天)變化的函數(shù)關(guān)系已經(jīng)給出,則易得一次噴灑4個單位的凈化劑時的函數(shù)關(guān)系式: ,這樣就得到一個分段函數(shù),對分段函數(shù)的處理常用的原則:先分開,現(xiàn)合并,解兩個不等式即可求解; 2)中若第一次噴灑2個單位的凈化劑,6天后再噴灑a)個單位的藥劑,根據(jù)題意從第6天開始濃度來源與兩方面,這是題中的難點,前面留下的為: ,后面新增的為: ,所得化簡即可得到: ,結(jié)合基本不等式知識求出最小值,最后解一個不等式: ,即可求解.

          試題解析:(1)因為一次噴灑4個單位的凈化劑,

          所以濃度

          則當時,由,解得,所以此時3

          時,由解得,所以此時

          綜合得,若一次投放4個單位的制劑,則有效凈化時間可達8天. 7

          2)設(shè)從第一次噴灑起,經(jīng)x)天,

          濃度10

          因為,而,

          所以,故當且僅當時,y有最小值為.

          ,解得,所以a的最小值為14

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的倍.

          (1)求曲線E的方程;

          (2)已知m≠0,設(shè)直線xmy﹣1=0交曲線EA,C兩點,直線mx+ym=0交曲線EB,D兩點,若CD的斜率為﹣1時,求直線CD的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱中, 分別為、的中點, , .

          (1)求證:平面平面;

          (2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】2018河南安陽市高三一模如下圖,在平面直角坐標系,直線與直線之間的陰影部分即為區(qū)域中動點的距離之積為1

          )求點的軌跡的方程;

          )動直線穿過區(qū)域,分別交直線兩點,若直線與軌跡有且只有一個公共點,求證 的面積恒為定值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】長方形中, , 中點(圖1).將沿折起,使得(圖2)在圖2中:

          (1)求證:平面 平面;

          (2)在線段上是否存點,使得二面角為大小為,說明理由

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知正項等比數(shù)列{an}(nN*),首項a13,前n項和為Sn,且S3a3、S5a5S4a4成等差數(shù)列.

          1)求數(shù)列{an}的通項公式;

          2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn[a,b],求ba的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,直線lyt(t≠0)交y軸于點M,交拋物線Cy2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.

          (1)求;

          (2)除H以外,直線MHC是否有其它公共點?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(2017·成都一診)已知橢圓的右焦點為F,設(shè)直線lx=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.

          (1)若直線l1的傾斜角為,求△ABM的面積S的值;

          (2)過點B作直線BNl于點N,證明:AM,N三點共線.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某市高中全體學生參加某項測評,按得分評為兩類(評定標準見表1).根據(jù)男女學生比例,使用分層抽樣的方法隨機抽取了10000名學生的得分數(shù)據(jù),其中等級為的學生中有40%是男生,等級為的學生中有一半是女生.等級為的學生統(tǒng)稱為類學生,等級為的學生統(tǒng)稱為類學生.整理這10000名學生的得分數(shù)據(jù),得到如圖2所示的頻率分布直方圖,

          類別

          得分(

          表1

          (I)已知該市高中學生共20萬人,試估計在該項測評中被評為類學生的人數(shù);

          (Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學生”的概率;

          (Ⅲ)在這10000名學生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為 類男生占男生總數(shù)的比例為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

          查看答案和解析>>

          同步練習冊答案