日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知二次函數(shù)滿足,且的最小值是.

          (1)求的解析式;

          (2)若關(guān)于的方程在區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

          (3)函數(shù),對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

          【答案】1 (2) 3

          【解析】試題分析:1)因,故對(duì)稱軸為,故可設(shè),再由.(2)有唯一實(shí)數(shù)根可以轉(zhuǎn)化為有唯一的交點(diǎn)去考慮.(3),任意都有不等式成立等價(jià)于,分、四種情形討論即可.

          解析:(1)因,對(duì)稱軸為,設(shè),由,所以.

          2由方程,即直線與函數(shù)的圖象有且只有一個(gè)交點(diǎn),作出函數(shù)的圖象.易得當(dāng)時(shí)函數(shù)圖象與直線只有一個(gè)交點(diǎn),所以的取值范圍是.

          3)由題意知.

          假設(shè)存在實(shí)數(shù)滿足條件,對(duì)任意都有成立,即,故有,由.

          當(dāng)時(shí), 上為增函數(shù), ,所以;

          當(dāng)時(shí), , .即,解得,所以.

          當(dāng)時(shí),

          解得.所以.

          當(dāng)時(shí), ,,所以綜上所述,

          所以當(dāng)時(shí),使得對(duì)任意都有成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點(diǎn),若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 =

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的程序框圖中,若輸出i的值是3,則輸入x的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)g(x)=ax3+bx2+cx+d(a≠0)的導(dǎo)函數(shù)為f(x),a+b+c=0,且f(0)f(1)>0,設(shè)x1 , x2是方程f(x)=0的兩個(gè)根,則|x1﹣x2|的取值范圍為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校從參加高二年級(jí)期末考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關(guān)信息回答下列問題:

          (1)求a,b的值,并畫出頻率分布直方圖;
          (2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分;
          (3)用分層抽樣的方法在分?jǐn)?shù)在[60,80)內(nèi)學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人的分?jǐn)?shù)在[70,80)內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè)投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0125萬元和05萬元

          1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

          2該家庭有20萬元資金,全部用于理財(cái)投資問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
          (Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).

          優(yōu)秀人數(shù)

          非優(yōu)秀人數(shù)

          總計(jì)

          甲班

          乙班

          30

          總計(jì)

          60

          (Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
          附: ,n=a+b+c+d

          P(K2>k0

          0.100

          0.050

          0.025

          0.010

          0.005

          k0

          2.706

          3.841

          5.024

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有實(shí)根?如果有實(shí)根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間使;如果沒有,請(qǐng)說明理由(注:區(qū)間的長(zhǎng)度

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).

          (1)求的值;

          (2)證明:在區(qū)間內(nèi)單調(diào)遞增;

          (3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案