日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點(diǎn),若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 =

          【答案】
          【解析】解:過E作EF∥AA1交AB于F,過F作FG⊥BD于G,連接EG,則∠EGF為平面EBD與平面AB﹣CD所成銳二面角的平面角,∵ ,∴ ,

          設(shè)AB=3,則EF=3,∴ ,則BF=2=B1E,

          ∴A1E=1,則三棱錐A﹣A1D1E外接球的直徑

          所以答案是

          【考點(diǎn)精析】認(rèn)真審題,首先需要了解棱柱的結(jié)構(gòu)特征(兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形),還要掌握球內(nèi)接多面體(球的內(nèi)接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長)的相關(guān)知識(shí)才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓心在直線上的圓經(jīng)過點(diǎn),但不經(jīng)過坐標(biāo)原點(diǎn),并且直線與圓相交所得的弦長為4.

          (1)求圓的一般方程;

          (2)若從點(diǎn)發(fā)出的光線經(jīng)過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達(dá)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了50名女性和50名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖
          (Ⅰ)完成下列2×2列聯(lián)表:

          喜歡旅游

          不喜歡旅游

          合計(jì)

          女性

          男性

          合計(jì)

          (II)能否在犯錯(cuò)率不超過0.025的前提下認(rèn)為“喜歡旅游與性別有關(guān)”
          附:

          P(K2≥k0

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:K2= ,其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 的圖像如圖所示.

          (1)求函數(shù)的解析式;

          (2)當(dāng)時(shí),求函數(shù)的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

          (1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
          (2)E為直線MN上一點(diǎn),且平面ADE⊥平面MNC,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)是圓內(nèi)一點(diǎn),直線.

          (1)若圓的弦恰好被點(diǎn)平分,求弦所在直線的方程;

          (2)若過點(diǎn)作圓的兩條互相垂直的弦,求四邊形的面積的最大值;

          (3)若, 上的動(dòng)點(diǎn),過作圓的兩條切線,切點(diǎn)分別為.證明:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)滿足,且的最小值是.

          (1)求的解析式;

          (2)若關(guān)于的方程在區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

          (3)函數(shù),對任意都有恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案