日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓E: + =1(a>b>0)過點(diǎn) ,且離心率e為
          (1)求橢圓E的方程;
          (2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.

          【答案】
          (1)解:由已知得 ,解得 ,

          ∴橢圓E的方程為


          (2)解:解法一:設(shè)點(diǎn)A(x1y1),B(x2,y2),AB中點(diǎn)為H(x0,y0).

          ,化為(m2+2)y2﹣2my﹣3=0,

          ∴y1+y2= ,y1y2= ,∴y0=

          G

          ∴|GH|2= = + = + +

          = = = ,

          故|GH|2 = + = + = >0.

          ,故G在以AB為直徑的圓外

          解法二:設(shè)點(diǎn)A(x1y1),B(x2,y2),則 = =

          ,化為(m2+2)y2﹣2my﹣3=0,

          ∴y1+y2= ,y1y2= ,

          從而 =

          = +y1y2

          = +

          = + = >0.

          >0,又 , 不共線,

          ∴∠AGB為銳角.

          故點(diǎn)G 在以AB為直徑的圓外


          【解析】解法一:(1)由已知得 ,解得即可得出橢圓E的方程.(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),AB中點(diǎn)為H(x0,y0).直線方程與橢圓方程聯(lián)立化為(m2+2)y2﹣2my﹣3=0,利用根與系數(shù)的關(guān)系中點(diǎn)坐標(biāo)公式可得:y0= .|GH|2= = ,作差|GH|2 即可判斷出.

          解法二:(1)同解法一.(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),則 = , = .直線方程與橢圓方程聯(lián)立化為(m2+2)y2﹣2my﹣3=0,計(jì)算 = 即可得出∠AGB,進(jìn)而判斷出位置關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是(
          A.5800
          B.6000
          C.6200
          D.6400

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
          (Ⅰ)求C;
          (Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域?yàn)镽,f(﹣2)=2021,對(duì)任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為(
          A.(﹣2,+∞)
          B.(﹣2,2)
          C.(﹣∞,﹣2)
          D.(﹣∞,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
          (1)求曲線C的普通方程;
          (2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中正確命題的個(gè)數(shù)是 ①對(duì)于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
          ②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
          ③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
          ④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (I)討論函數(shù)的單調(diào)性,并證明當(dāng)x>﹣2時(shí),xex+2+x+4>0;
          (Ⅱ)證明:當(dāng)a∈[0,1)時(shí),函數(shù)g(x)= (x>﹣2)有最小值,設(shè)g(x)最小值為h(a),求函數(shù)h(a)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在直角坐標(biāo)系xOy中,曲線C1 (θ為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線C2:ρsin( )=1.
          (1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
          (2)曲線C1上恰好存在三個(gè)不同的點(diǎn)到曲線C2的距離相等,分別求這三個(gè)點(diǎn)的極坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知一個(gè)幾何體的三視圖如圖所示.

          1)求此幾何體的表面積;

          2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案