日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一圓形紙片的半徑為10cm,圓心為O,F(xiàn)為圓內一定點,OF=6cm,M為圓周上任意一點,把圓紙片折疊,使M與F重合,然后抹平紙片,這樣就得到一條折痕CD,設CD與OM交于P點(如圖),建立適當?shù)闹苯亲鴺讼,求點P的軌跡方程.
          分析:由于圓紙片折疊,折痕為CD,所以CD垂直平分線段MF,從而可知點P的軌跡是以F,O為焦點的橢圓,建立直角坐標系,可求軌跡方程.
          解答:解:以FO所在直線為x軸,線段FO的中垂線為y軸,建立直角坐標系.
          由題設,得:CD垂直平分線段MF,則有:|PO|+|PF|=|PO|+|PM|=|OM|=10
          即|PO|+|PF|=10>|OF|,所以點P的軌跡是以F,O為焦點的橢圓. 方程為:
          x2
          a2
          +
          y2
          b2
          =1,2a=10,2c=6⇒b2=16
          ,點P的軌跡方程為:
          x2
          25
          +
          y2
          16
          =1
          ;
          點評:本題主要考查橢圓的定義,考查標準方程的求解,正確轉化是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          張老師有天覺得很無聊,她把一張半徑為1的圓形紙片在邊長為a(a≥3)的正方形內任意移動,那么在正方形內,這張圓形紙片“不能接觸到的部分”的面積是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源:廣東省培正中學2011-2012學年高二第一學期期中考考試數(shù)學理科試題 題型:044

          一圓形紙片的半徑為10 cm,圓心為O,F為圓內一定點,OF=6 cm,M為圓周上任意一點,把圓紙片折疊,使MF重合,然后抹平紙片,這樣就得到一條折痕CD,設CDOM交于P點,如圖

          (1)求點P的軌跡方程;

          (2)求證:直線CD為點P軌跡的切線.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一圓形紙片的半徑為10cm,圓心為OF為圓內一定點,OF=6cm,M為圓周上任意一點,把圓紙片折疊,使MF重合,然后抹平紙片,這樣就得到一條折痕CD,設CDOM交于P點,如圖

          (1)求點P的軌跡方程;

          (2)求證:直線CD為點P軌跡的切線.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012年廣東省高二上學期期中考試理科數(shù)學 題型:解答題

          (本小題滿分14分)  一圓形紙片的半徑為10cm,圓心為O,

          F為圓內一定點,OF=6cm,M為圓周上任意一點,把圓紙片折疊,

          使MF重合,然后抹平紙片,這樣就得到一條折痕CD,設CD

          OM交于P點,如圖

          (1)求點P的軌跡方程;

          (2)求證:直線CD為點P軌跡的切線.

           

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年重慶94中高三(上)第五次月考數(shù)學試卷(解析版) 題型:選擇題

          張老師有天覺得很無聊,她把一張半徑為1的圓形紙片在邊長為a(a≥3)的正方形內任意移動,那么在正方形內,這張圓形紙片“不能接觸到的部分”的面積是( )

          A.a(chǎn)2
          B.(4-π)a2
          C.π
          D.4-π

          查看答案和解析>>

          同步練習冊答案