日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)討論函數(shù)的極值;

          2)是否存在實(shí)數(shù),使得不等式上恒成立?若存在,求出的最小值:若不存在,請說明理由.

          【答案】1)答案不唯一,具體見解析(2)存在;的最小值是1

          【解析】

          1)對(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;

          2)令,可證恒成立,而,由(2)得,為減函數(shù),上單調(diào)遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出單調(diào)遞增時(shí)的取值范圍即可.

          1)由題知,

          ①當(dāng)時(shí),,所以上單調(diào)遞減,沒有極值;

          ②當(dāng)時(shí),令,得,

          當(dāng)時(shí),單調(diào)遞減,

          當(dāng)時(shí),單調(diào)遞增,

          處取得極小值,無極大值.

          2)不妨令,

          設(shè)恒成立,

          單調(diào)遞增,,

          恒成立,

          所以當(dāng)時(shí),,

          由(1)知,當(dāng)時(shí),上單調(diào)遞減,

          恒成立;

          所以若要不等式上恒成立,只能.

          當(dāng)時(shí),,由(1)知,上單調(diào)遞減,

          所以,不滿足題意.

          當(dāng)時(shí),設(shè),

          因?yàn)?/span>,所以,

          ,

          所以上單調(diào)遞增,又,

          所以當(dāng)時(shí),恒成立,即恒成立,

          故存在,使得不等式上恒成立.

          此時(shí)的最小值是1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校從學(xué)生會(huì)宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動(dòng).

          (1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

          (2)求男生甲或女生乙被選中的概率;

          (3)設(shè)男生甲被選中為事件A女生乙被選中為事件B,求P(B)P(B|A)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,上、下頂點(diǎn)分別是,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.

          1)求橢圓的方程;

          2)若為橢圓上異于、的動(dòng)點(diǎn),過作與軸平行的直線,直線交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從數(shù)列中取出部分項(xiàng)組成的數(shù)列稱為數(shù)列子數(shù)列”.

          1)若等差數(shù)列的公差,其子數(shù)列恰為等比數(shù)列,其中,,求

          2)若,,判斷數(shù)列是否為子數(shù)列,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)復(fù)數(shù)β=x+yix,yR)與復(fù)平面上點(diǎn)Pxy)對應(yīng).

          1)若β是關(guān)于t的一元二次方程t22t+m=0mR)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;

          2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(﹣1n|β3|=3a+(﹣1na(其中nN*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)Px、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)Px、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1C2的方程;

          3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)Bx0,0)(x00)的最小距離不小于,求實(shí)數(shù)x0的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)處有極值

          1)求的解析式;

          2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù)有兩個(gè)不同的零點(diǎn)

          I)證明:;

          (Ⅱ)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:

          (1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

          (2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差

          (ⅰ)利用該正態(tài)分布,求

          (ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求

          附:.若,則,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線x=﹣2上有一動(dòng)點(diǎn)Q,過點(diǎn)Q作直線l,垂直于y軸,動(dòng)點(diǎn)P在l1上,且滿足(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.

          (1)求曲線C的方程;

          (2)已知定點(diǎn)M(,0),N(,0),點(diǎn)A為曲線C上一點(diǎn),直線AM交曲線C于另一點(diǎn)B,且點(diǎn)A在線段MB上,直線AN交曲線C于另一點(diǎn)D,求△MBD的內(nèi)切圓半徑r的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案