【題目】已知某山區(qū)小學有名四年級學生,將全體四年級學生隨機按
編號,并且按編號順序平均分成
組.現(xiàn)要從中抽取
名學生,各組內(nèi)抽取的編號按依次增加
進行系統(tǒng)抽樣.
(1)若抽出的一個號碼為,據(jù)此寫出所有被抽出學生的號碼;
(2)分別統(tǒng)計這名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差.
(注:,方差
)
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系下,方程的圖形為如圖所示的“幸運四葉草”,又稱為玫瑰線.
(1)當玫瑰線的時,求以極點為圓心的單位圓與玫瑰線的交點的極坐標;
(2)求曲線上的點M與玫瑰線上的點N距離的最小值及取得最小值時的點M、N的極坐標(不必寫詳細解題過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知二次函數(shù)(
、
、
均為實常數(shù),
)的最小值是0,函數(shù)
的零點是
和
,函數(shù)
滿足
,其中
,為常數(shù).
(1)已知實數(shù)、
滿足、
,且
,試比較
與
的大小關系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,二面角中,
,射線
,
分別在平面
,
內(nèi),點A在平面
內(nèi)的射影恰好是點B,設二面角
、
與平面
所成角、
與平面
所成角的大小分別為
,則( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線:
(
為參數(shù))和定點
,
是曲線
的左、右焦點,以原點
為極點,以
軸的非負半軸為極軸且取相同單位長度建立極坐標系.
(1)求直線的極坐標方程;
(2)經(jīng)過點且與直線
垂直的直線
交曲線
于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中,
為底面正方形的中心,
,
分別為側棱
,
的中點,有下列結論正確的有:( )
A.∥平面
B.平面
∥平面
C.直線與直線
所成角的大小為
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(
=1,2,…,6),如表所示:
試銷單價 | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量 | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關關系,求產(chǎn)品銷量
(件)關于試銷單價
(元)的線性回歸方程
;
(參考公式:線性回歸方程中,
的最小二乘估計分別為
,
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com