日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)為坐標(biāo)原點(diǎn),動點(diǎn)在圓上,過軸的垂線,垂足為,點(diǎn)滿足

          1)求點(diǎn)的軌跡的方程;

          2)直線上的點(diǎn)滿足.過點(diǎn)作直線垂直于線段于點(diǎn)

          (ⅰ)證明:恒過定點(diǎn);

          (ⅱ)設(shè)線段于點(diǎn),求四邊形的面積.

          【答案】12)(。┳C明見解析;(ⅱ).

          【解析】

          1)設(shè),則,根據(jù)向量關(guān)系坐標(biāo)化可得,消去可得軌跡的方程;

          2)(。┰O(shè),根據(jù)直線垂直,向量的數(shù)量積為0可得:,設(shè)直線方程為,化簡即可得到直線過定點(diǎn)坐標(biāo);

          (ⅱ)根據(jù)直線與圓相交的弦長公式求出,,再根據(jù)對角線相乘的半,求得四邊形的面積.

          1)設(shè),則

          ,又,,

          ,∴,化簡得點(diǎn)的軌跡方程為

          2)(。┰O(shè),

          ,∴

          ,∴

          又直線過點(diǎn)且垂直于線段,故設(shè)直線方程為

          化簡得,又由①式可得,所以恒過定點(diǎn)

          (ⅱ)直線,交圓兩點(diǎn)

          則圓心到直線的距離為,

          ∴弦長

          又直線,由,

          ,

          ,即四邊形的面積

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某便利店統(tǒng)計了今年第一季度各個品類的銷售收入占比和凈利潤占比,并將部分品類的這兩個數(shù)據(jù)制成如下統(tǒng)計圖(注:銷售收入占比,凈利潤占比,凈利潤銷售收入成本各類費(fèi)用),現(xiàn)給出下列判斷:

          ①該便利店第一季度至少有一種品類是虧損的;

          ②該便利店第一季度的銷售收入中“生鮮類”貢獻(xiàn)最大;

          ③該便利店第一季度“非生鮮食品類”的凈利潤一定高于“日用百貨”的銷售收入;

          ④該便利店第一季度“生鮮類”的銷售收入比“非生鮮食品類”的銷售收入多.

          則上述判斷中正確的是(

          A.①②B.②③C.①④D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)軸下方(不含軸)一點(diǎn),拋物線上存在不同的兩點(diǎn)、滿足,,其中為常數(shù),且、兩點(diǎn)均在上,弦的中點(diǎn)為

          1)若點(diǎn)坐標(biāo)為,時,求弦所在的直線方程;

          2)在(1)的條件下,如果過點(diǎn)的直線與拋物線只有一個交點(diǎn),過點(diǎn)的直線與拋物線也只有一個交點(diǎn),求證:若的斜率都存在,則的交點(diǎn)在直線上;

          3)若直線交拋物線于點(diǎn),求證:線段的比為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.

          1)求橢圓的方程;

          2)若,求的面積;

          3)證明:的內(nèi)切圓的圓心在一條定直線上。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時,求函數(shù)處的切線方程;

          2)若上恒成立,求實(shí)數(shù)的取值范圍;

          3)當(dāng)時,求函數(shù)的極大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面直角坐標(biāo)系中,曲線的方程為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.若將曲線上的所有點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)伸長到原來的倍,得曲線

          1)寫出直線和曲線的直角坐標(biāo)方程;

          2)設(shè)點(diǎn), 直線與曲線的兩個交點(diǎn)分別為,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是拋物線C上的一點(diǎn),過P作互相垂直的直線PAPB.與拋物線C的另一交點(diǎn)分別是A,B.

          1)若直線AB的斜率為,求AB方程;

          2)設(shè),當(dāng)時,求PAB的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,圓錐的底面半徑為2,是圓周上的定點(diǎn),動點(diǎn)在圓周上逆時針旋轉(zhuǎn),設(shè)(),是母線的中點(diǎn),已知當(dāng)時,與底面所成角為.

          1)求該圓錐的側(cè)面積;

          2)若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,,,且的離心率為,拋物線,點(diǎn)上.

          1)求橢圓的方程;

          2)過點(diǎn)的切線,若,直線交于兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案