日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:(x+1)2+y2=8.
          (1)設(shè)點Q(x,y)是圓C上一點,求x+y的取值范圍;
          (2)如圖,定點A(1,0),M為圓C上一動點,點P在AM上,點N在CM上,且滿足數(shù)學公式,求點N的軌跡的內(nèi)接矩形的最大面積.

          解:(1)∵點在圓C上,

          ∴可設(shè)α∈[0,2π);(2分)
          ,(4分)
          從而x+y∈[-5,3].(6分)
          (2)∵
          ∴NP為AM的垂直平分線,
          ∴|NA|=|NM|.(8分)
          又∵,∴
          ∴動點N的軌跡是以點C(-1,0),A(1,0)為焦點的橢圓.(10分)
          且橢圓長軸長為,焦距2c=2.

          ∴點N的軌跡是方程為.(12分)
          所以N為橢圓,其內(nèi)接矩形的最大面積為.(14分)
          分析:(1)由已知中圓C:(x+1)2+y2=8,我們易求出圓的參數(shù)方程α∈[0,2π),將問題轉(zhuǎn)化為三角函數(shù)值域問題,利用輔助角公式,及正弦型函數(shù)的性質(zhì),易得到答案.
          (2)由,易得NP為AM的垂直平分線,則.則動點N的軌跡是以點C(-1,0),A(1,0)為焦點的橢圓,且橢圓長軸長為,焦距2c=2.由此可以得到N的軌跡方程,則連接其通徑四個點的內(nèi)接矩形的面積最大,由此即可得到答案.
          點評:本題考查的知識點是圓方程的綜合應(yīng)用,在求x+y的取值范圍時,利用參數(shù)方程可以大大簡化解題的難度.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知圓C:(x+1)2+y2=25及點A(1,0),Q為圓上一點,AQ的垂直平分線交CQ于M,則點M的軌跡方程為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B
          (1)當弦AB被點P平分時,寫出直線l的方程;
          (2)當直線l的傾斜角為45°時,求弦AB的長.
          (3)設(shè)圓C與x軸交于M、N兩點,有一動點Q使∠MQN=45°.試求動點Q的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
          (1)當l經(jīng)過圓心C時,求直線l的方程;
          (2)當弦AB的長為4
          2
          時,寫出直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知圓C:(x-1)2+(y-2)2=5,直線l:x-y=0,則C關(guān)于l的對稱圓C′的方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知圓C:(x-1)2+(y+1)2=1,那么圓心C到坐標原點O的距離是
          2
          2

          查看答案和解析>>

          同步練習冊答案