日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù))是奇函數(shù).

          1)求實(shí)數(shù)的值;

          2)若,,求的取值范圍.

          3)若,且恒成立,求的范圍.

          【答案】(1)(2)(3)

          【解析】

          1)由函數(shù)為奇函數(shù)可得,代入即可得的值,再驗(yàn)證即可;(2)結(jié)合(1)中的結(jié)論以及可得的值,解不等式即可得的取值范圍;(3)結(jié)合(1)中的結(jié)論以及可得,可得的解析式,令,原題意可等價(jià)于上恒成立,利用分離參數(shù)思想可得,上恒成立,求出不等式右端的的最小值即可.

          1)∵是奇函數(shù),∴

          ,即

          當(dāng)時(shí),,

          是奇函數(shù).

          .

          2)由(1)知.

          ,

          ,

          即:

          ,又

          化簡(jiǎn)得:,∴

          ∴此時(shí).

          3)∵,,

          .

          *.

          ,∴.

          ∴(*)可化為:.

          要使上恒成立,

          只需:上恒成立.

          即:上恒成立.

          即:,

          又函數(shù)單減,單增.

          ,∴

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

          (2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2017年11月、12月全國(guó)大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

          日期

          第一周

          第二周

          第三周

          第四周

          第五周

          第六周

          晝夜溫差x(°C)

          10

          11

          13

          12

          8

          6

          就診人數(shù)y(個(gè))

          22

          25

          29

          26

          16

          12

          該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。

          (Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;

          (Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程

          (Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

          (參考公式: )

          參考數(shù)據(jù): 1092, 498

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解華師一附中學(xué)生喜歡吃辣是否與性別有關(guān),調(diào)研部(共10人)分三組對(duì)高中三個(gè)年級(jí)的學(xué)生進(jìn)行調(diào)查,每個(gè)年級(jí)至少派3個(gè)人進(jìn)行調(diào)查.(1)求調(diào)研部的甲、乙兩人都被派到高一年級(jí)進(jìn)行調(diào)查的概率.(2)調(diào)研部對(duì)三個(gè)年級(jí)共100人進(jìn)行了調(diào)查,得到如下的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?

          喜歡吃辣

          不喜歡吃辣

          合計(jì)

          男生

          10

          女生

          20

          30

          合計(jì)

          100

          參考數(shù)據(jù):

          參考公式:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)且斜率存在的直線與拋物線交于兩點(diǎn),且點(diǎn)在點(diǎn)上方,點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

          (1)求證:直線過(guò)某一定點(diǎn);

          (2)當(dāng)直線的斜率為正數(shù)時(shí),若以為直徑的圓過(guò),求的內(nèi)切圓與的外接圓的半徑之比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

          (1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

          (2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?

          45歲以下

          45歲以上

          總計(jì)

          不支持

          支持

          總計(jì)

          參考數(shù)據(jù):

          P(K2≥k0)

          0.100

          0.050

          0.010

          0.001

          k0

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.

          1)求函數(shù)的解析式;

          2)設(shè),若對(duì)任意恒成立,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)

          (1)若,且,求的最小值;

          (2)若,且上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為(

          A. 10000立方尺 B. 11000立方尺

          C. 12000立方尺 D. 13000立方尺

          查看答案和解析>>

          同步練習(xí)冊(cè)答案