【題目】學(xué)校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機(jī)摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數(shù)X的分布列.(用數(shù)字作答)
【答案】
(1)解:①設(shè)“在1次游戲中摸到i個白球”為事件Ai(i=0,1,2,3),
則P(A3)= =
;
②設(shè)“在一次游戲中獲獎”為事件B,則B=A2∪A3,
又P(A2)=
+
=
,且A2、A3互斥,
所以P(B)=P(A2)+P(A3)= +
=
(2)解:由題意可知X的所有可能取值為0,1,2,3;
P(X=0)= (1﹣
)3=
,
P(X=1)=C31
=
,
P(X=2)=
(1﹣
)=
,
P(X=3)=
=
;
所以X的分布列為
X | 0 | 1 | span>2 | 3 |
P |
【解析】(1)①求出基本事件總數(shù),計算摸出3個白球事件數(shù),利用古典概型公式,代入數(shù)據(jù)得到結(jié)果;②獲獎包含摸出2個白球和摸出3個白球,且它們互斥,根據(jù)①求出摸出2個白球的概率,再相加即可求得結(jié)果;(2)確定在3次游戲中獲獎次數(shù)X的取值是0、1、2、3,求出相應(yīng)的概率,即可寫出分布列.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,
是等邊三角形,已知
,
.
(1)設(shè)是
上的一點(diǎn),證明:平面
平面
;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及對應(yīng)的x值;
(2)x取何值時,f(log2x)>f(1)且log2[f(x)]<f(1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H為BC的中點(diǎn).
(1)求證:FH∥平面EDB;
(2)求證:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合為集合
的
個非空子集,這
個集合滿足:①從中任取
個集合都有
成立;②從中任取
個集合都有
成立.
(Ⅰ)若,
,
,寫出滿足題意的一組集合
;
(Ⅱ)若,
,寫出滿足題意的一組集合
以及集合
;
(Ⅲ) 若,
,求集合
中的元素個數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=﹣ x3+
x2+2ax.
(1)若f(x)在( ,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.
(2)當(dāng)0<a<2時,f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面
平面
,四邊形
為菱形,點(diǎn)
是棱
上不同于
,
的點(diǎn),平面
與棱
交于點(diǎn)
,
,
,
.
(Ⅰ)求證: ∥平面
;
(Ⅱ)求證: 平面
;
(Ⅲ)若二面角為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)的定義域?yàn)镽,且在(﹣∞,0)上是增函數(shù),則f(﹣ )與f(a2﹣a+1)的大小關(guān)系為( )
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足:a1= ,前n項(xiàng)和Sn=
an ,
(1)寫出a2 , a3 , a4;
(2)猜出an的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com