日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,

          (1)證明:平面PAB與平面PCD的交線平行于底面;
          (2)求cos∠COD.

          【答案】
          (1)證明:設(shè)平面PAB與平面PCD的交線為l,則

          ∵AB∥CD,AB平面PCD,∴AB∥平面PCD

          ∵AB面PAB,平面PAB與平面PCD的交線為l,∴AB∥l

          ∵AB在底面上,l在底面外

          ∴l(xiāng)與底面平行;


          (2)解:設(shè)CD的中點(diǎn)為F,連接OF,PF

          由圓的性質(zhì),∠COD=2∠COF,OF⊥CD

          ∵OP⊥底面,CD底面,∴OP⊥CD

          ∵OP∩OF=O

          ∴CD⊥平面OPF

          ∵CD平面PCD

          ∴平面OPF⊥平面PCD

          ∴直線OP在平面PCD上的射影為直線PF

          ∴∠OPF為OP與平面PCD所成的角

          由題設(shè),∠OPF=60°

          設(shè)OP=h,則OF=OPtan∠OPF=

          ∵∠OCP=22.5°,∴

          ∵tan45°= =1

          ∴tan22.5°=

          ∴OC= =

          在Rt△OCF中,cos∠COF= = =

          ∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣12


          【解析】(1)利用線面平行的判定與性質(zhì),可證平面PAB與平面PCD的交線平行于底面;(2)先作出OP與平面PCD所成的角,再求出OC,OF,求出cos∠COF,利用二倍角公式,即可求得cos∠COD.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn),以及對(duì)空間中直線與平面之間的位置關(guān)系的理解,了解直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )

          A. 函數(shù)的周期為

          B. 函數(shù)上單調(diào)遞增

          C. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

          D. 把函數(shù)的圖象向右平移個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
          (1)求l的方程;
          (2)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知的三個(gè)頂點(diǎn)為, 的中點(diǎn).求:

          (1) 所在直線的方程;

          (2) 邊上中線所在直線的方程;

          (3) 邊上的垂直平分線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

          (1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

          (2)求曲線C上的點(diǎn)到直線l的最大距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)過曲線上任意一點(diǎn)處的切線為,總存在過曲線上一點(diǎn)處的切線,使得,則實(shí)數(shù)的取值范圍為_____________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

          A.函數(shù)f(x)有極大值f(2)和極小值f(1)
          B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
          C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
          D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(其中 為自然對(duì)數(shù)的底數(shù))

          (Ⅰ)若函數(shù)無極值,求實(shí)數(shù)的取值范圍;

          (Ⅱ)當(dāng)時(shí),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

          打算觀看

          不打算觀看

          女生

          20

          b

          男生

          c

          25

          1)求出表中數(shù)據(jù)b,c;

          2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

          3)為了計(jì)算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺(tái)采訪,請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

          P(K2≥k0)

          0.10

          0.05

          0.025

          0.01

          0.005

          K0

          2.706

          3.841

          5.024

          6.635

          7.879

          附:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案