(本小題滿分12分)設(shè)直線與直線
交于
點(diǎn).
(1)當(dāng)直線過(guò)
點(diǎn),且與直線
垂直時(shí),求直線
的方程;
(2)當(dāng)直線過(guò)
點(diǎn),且坐標(biāo)原點(diǎn)
到直線
的距離為
時(shí),求直線
的方程.
(1) . (2)
或
.
解析試題分析:由,解得點(diǎn)
. ………………………2分
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ca/3/9hxvx1.png" style="vertical-align:middle;" />⊥,所以直線
的斜率
, ………………………4分
又直線過(guò)點(diǎn)
,故直線
的方程為:
,即
. …………………………6分
(2)因?yàn)橹本過(guò)點(diǎn)
,當(dāng)直線
的斜率存在時(shí),可設(shè)直線
的方程為
即
. …………………7分
所以坐標(biāo)原點(diǎn)到直線
的距離
,解得
, …………9分
因此直線的方程為:
,即
. …………10分
當(dāng)直線的斜率不存在時(shí),直線
的方程為
,驗(yàn)證可知符合題意.[來(lái)
綜上所述,所求直線的方程為
或
. ………………12分
考點(diǎn):本題主要考查直線與直線的位置關(guān)系,求直線方程。
點(diǎn)評(píng):典型題,在直線與直線的位置關(guān)系問(wèn)題中,平行、垂直是兩類常見(jiàn)題型,如果利用斜率關(guān)系加以研究,必須考慮直線斜率不存在的可能情況。(2)是易錯(cuò)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個(gè)點(diǎn)到直線L的距離恰為
?并說(shuō)明理由;
(2)若,且a>b,
,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線所圍成的封閉圖形的面積為
,曲線
的內(nèi)切圓半徑為
.記
為以曲線
與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過(guò)橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點(diǎn).
(i)若(
為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)
在橢圓
上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(ii)若是
與橢圓
的交點(diǎn),求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在雙曲線中,F(xiàn)1、F2分別為其左右焦點(diǎn),點(diǎn)P在雙曲線上運(yùn)動(dòng),求△PF1F2的重心G的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓,它的離心率為
,一個(gè)焦點(diǎn)和拋物線
的焦點(diǎn)重合,過(guò)直線
上一點(diǎn)M引橢圓
的兩條切線,切點(diǎn)分別是A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點(diǎn)
處的橢圓的切線方程是
. 求證:直線
恒過(guò)定點(diǎn)
;并出求定點(diǎn)
的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù),使得
恒成立?(點(diǎn)
為直線
恒過(guò)的定點(diǎn))若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
(1)求直線被雙曲線
截得的弦長(zhǎng);
(2)求過(guò)定點(diǎn)的直線被雙曲線
截得的弦中點(diǎn)軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜率為1的直線過(guò)拋物線的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知:橢圓的中心為
,長(zhǎng)軸的兩個(gè)端點(diǎn)為
,右焦點(diǎn)為
,
.若橢圓
經(jīng)過(guò)點(diǎn)
,
在
上的射影為
,且△
的面積為5.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知圓:
=1,直線
=1,試證明:當(dāng)點(diǎn)
在橢圓
上
運(yùn)動(dòng)時(shí),直線與圓
恒相交;并求直線
被圓
截得的弦長(zhǎng)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com