日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 邊長為2的菱形ABCD中,∠A=60°,沿BD折成直二面角,過點A作PA⊥平面ABD,且數(shù)學(xué)公式
          (Ⅰ)求證:PA∥平面DBC;
          (Ⅱ)求直線PC與平面DBC所成角的大。

          解:(Ⅰ)取BD的中點O,連接CO,則
          等邊△BCD中,可得CO⊥BD.   …(1分)
          又∵平面DBC⊥平面ABD,平面DBC∩平面ABD=BD,
          CO?平面DBC,CO⊥BD
          ∴CO⊥平面ABD.        …(3分)
          又∵AP⊥平面ABD,∴CO∥PA.       …(4分)
          ∵CO?平面DBC,PA?平面DBC
          ∴PA∥平面DBC. …(7分)
          (Ⅱ)∵CO∥PA,
          ∴O、A、P、C四點共面.
          連接AO并延長交PC的延長線于H.
          ∵平面DBC⊥平面ABD,平面DBC∩平面ABD=BD,AH⊥BD,
          ∴AH⊥平面BCD,
          ∴直線CO即直線PH在平面BCD內(nèi)的射影,可得∠HCO即直線PH平面BCD所成的角. …(10分)
          ∵CO∥PA且,可得OC是△PAH的中位線.

          又∵,可得Rt△HCO中,tan∠HCO==1
          ∴∠HCO=45°,即直線PC與平面DBC所成角為45°…(14分)
          分析:(I)取BD的中點O,連接CO,可得等邊△BCD中O⊥BD.根據(jù)面面垂直判定定理,由平面DBC⊥平面ABD證出CO⊥平面ABD,結(jié)合PA⊥平面ABD可得CO∥PA,最后根據(jù)線面平面的判定定理,即可證出PA∥平面DBC;
          (II)根據(jù)題意,得O、A、P、C四點共面,因此連接AO并延長交PC的延長線于H.由平面DBC⊥平面ABD,證出AH⊥平面BCD,從而得到∠HCO即直線PH平面BCD所成的角.Rt△HCO中,利用正切的定義求得∠HCO=45°,即直線PC與平面DBC所成角的大小為45°.
          點評:本題給出平面折疊問題,求證線面平行并求直線與平面所成角的大小,著重考查了線面垂直、線面平行的判定定理和直線與平面所成角求法等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠ABC=60°,點M是棱PC的中點,PA⊥平面ABCD,AC、BD交于點O.
          (1)已知:PA=
          2
          ,求證:AM⊥平面PBD;
          (2)若二面角M-AB-D的余弦值等于
          21
          7
          ,求PA的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知斜三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面ABB1A1是邊長為2的菱形,且∠A1AB=60°,M是AB的中點,MA1⊥AC.
          (1)求證:MA1⊥平面ABC;
          (2)求點M到平面AA1C1C的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐O-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,OA⊥底面ABCD,OA=2,M為OA的中點,P為CD的中點.
          (1)求證:CD⊥平面MAP;
          (2)求證:MP∥平面OBC;
          (3)求三棱錐M-PAD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•渭南二模)如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點.
          (Ⅰ)若PB=PD,求證:BD⊥CQ;
          (Ⅱ)在(Ⅰ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是PA的中點,BD⊥CQ,PA=PC,PB=3,∠ABC=60°.
          (1)求證:PC∥平面BDQ; 
          (2)求四棱錐P-ABCD的體積.

          查看答案和解析>>

          同步練習(xí)冊答案