日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點(diǎn)x為f(x)的極值點(diǎn)的充要條件是f′(x)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x,則x一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為    
          【答案】分析:①由f′(x)<0⇒f(x)在(a,b)上是減函數(shù),但反之是f′(x)≤0,因?yàn)椴谎芯恳粋(gè)點(diǎn)的單調(diào)性.②由極值點(diǎn)的定義判斷.③由最值點(diǎn)的定義判斷.④由極值點(diǎn)的定義判斷,綜合可得答案.
          解答:解:①不正確,由f′(x)<0⇒f(x)在(a,b)上是減函數(shù),f(x)在(a,b)上是減函數(shù)⇒f′(x)≤0
          ②不正確,點(diǎn)x為f(x)的極值點(diǎn)由必須滿(mǎn)足兩個(gè)條件一是f′(x)=0,二是兩側(cè)的正負(fù)相異.
          ③正確,f(x)在(a,b)上有唯一的極值點(diǎn)x,對(duì)函數(shù)來(lái)講兩側(cè)的單調(diào)性相異.符合最值的定義.
          ④正確,由極值點(diǎn)的定義可知.
          故答案為:③④
          點(diǎn)評(píng):本題主要考查用導(dǎo)數(shù)研究單調(diào)區(qū)間,極值點(diǎn)的定義,最值點(diǎn)的定義,在應(yīng)用時(shí)一定要注意知識(shí)的完全性和純粹性.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          18、關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為
          ③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線(xiàn)與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
          f(x2)-f(x1)
          x2-x1
          =0
          在(x1,x2)恒有實(shí)數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
          f(b)-f(a)
          b-a
          .如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時(shí),
          b-a
          b
          <ln
          b
          a
          b-a
          a
          (可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為 ________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為 ______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案