日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點x0為f(x)的極值點的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點x0,則x0一定是f(x)的最值點;④f(x)在(a,b)上一點x0的左右兩側(cè)的導(dǎo)數(shù)異號的充要條件是點x0是函數(shù)f(x)的極值點.其中正確命題的序號為 ______.
          ①不正確,由f′(x)<0?f(x)在(a,b)上是減函數(shù),f(x)在(a,b)上是減函數(shù)?f′(x)≤0
          ②不正確,點x0為f(x)的極值點由必須滿足兩個條件一是f′(x0)=0,二是兩側(cè)的正負相異.
          ③正確,f(x)在(a,b)上有唯一的極值點x0,對函數(shù)來講兩側(cè)的單調(diào)性相異.符合最值的定義.
          ④正確,由極值點的定義可知.
          故答案為:③④
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          18、關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點x0為f(x)的極值點的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點x0,則x0一定是f(x)的最值點;④f(x)在(a,b)上一點x0的左右兩側(cè)的導(dǎo)數(shù)異號的充要條件是點x0是函數(shù)f(x)的極值點.其中正確命題的序號為
          ③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
          f(x2)-f(x1)
          x2-x1
          =0
          在(x1,x2)恒有實數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
          f(b)-f(a)
          b-a
          .如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
          當0<a<b時,
          b-a
          b
          <ln
          b
          a
          b-a
          a
          (可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點x0為f(x)的極值點的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點x0,則x0一定是f(x)的最值點;④f(x)在(a,b)上一點x0的左右兩側(cè)的導(dǎo)數(shù)異號的充要條件是點x0是函數(shù)f(x)的極值點.其中正確命題的序號為 ________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省廈門第一中學(xué)高二(下)期中數(shù)學(xué)試卷(選修2-2)(解析版) 題型:填空題

          關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
          f′(x)<0;②(a,b)上的點x為f(x)的極值點的充要條件是f′(x)=0;③若f(x)在(a,b)上有唯一的極值點x,則x一定是f(x)的最值點;④f(x)在(a,b)上一點x的左右兩側(cè)的導(dǎo)數(shù)異號的充要條件是點x是函數(shù)f(x)的極值點.其中正確命題的序號為    

          查看答案和解析>>

          同步練習(xí)冊答案