(滿分13分)已知,若
在區(qū)間
上的最小值為
,求
的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2010福建理數(shù))17.(本小題滿分13分)
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線,使得直線
與橢圓C有公共點(diǎn),且直線OA與
的距離等于4?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省黃岡中學(xué)高三最后一次模擬考試?yán)頂?shù) 題型:解答題
(本小題滿分13分)
已知橢圓:
上的一動(dòng)點(diǎn)
到右焦點(diǎn)的最短距離為
,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長(zhǎng).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過(guò)點(diǎn)(
,
)的動(dòng)直線
交橢圓
于
、
兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)
,使得無(wú)論
如何轉(zhuǎn)動(dòng),以
為直徑的圓恒過(guò)定點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年天津市普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
三、解答題:本大題共6小題,共80分.
15.(本小題滿分13分)
已知函數(shù),
(Ⅰ)求的定義域與最小正周期;
(Ⅱ)設(shè),若
求
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州市高三畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)
已知點(diǎn)為拋物線
:
的焦點(diǎn),
為拋物線
上的點(diǎn),且
.
(Ⅰ)求拋物線的方程和點(diǎn)
的坐標(biāo);
(Ⅱ)過(guò)點(diǎn)引出斜率分別為
的兩直線
,
與拋物線
的另一交點(diǎn)為
,
與拋物線
的另一交點(diǎn)為
,記直線
的斜率為
.
(。┤,試求
的值;
(ⅱ)證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:安徽省2012屆高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本小題滿分13分)已知函數(shù)
(Ⅰ)求函數(shù)在(1, )的切線方程
(Ⅱ)求函數(shù)的極值
(Ⅲ)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn)
,且
,使得曲線在點(diǎn)
處的切線
,則稱
為弦
的陪伴切線.已知兩點(diǎn)
,試求弦
的陪伴切線
的方程;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com