【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
【答案】6
【解析】
根據(jù)采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員,結(jié)合抽取人數(shù)為正整數(shù),則可得到n=6,12,18或36,再由采用系統(tǒng)抽樣需剔除1個報名人員,即可得到n=6。
報名人員共36人,當(dāng)樣本容量為n時,
因為采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員
所以為
的正約數(shù),又因為
系統(tǒng)抽樣間隔,分層抽樣比例
,
抽取醫(yī)技人,護(hù)士
人,
醫(yī)生人
又n為6的倍數(shù),36的約數(shù),即n=6,12,18,36
當(dāng)抽取n+1人時,總?cè)藬?shù)中剔除1人為35人,
系統(tǒng)抽樣間隔,所以n=6.
故答案為:6
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(I)證明:AE⊥PD;
(II)設(shè)AB=PA=2,
①求異面直線PB與AD所成角的正弦值;
②求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:
,
,
為左,右焦點,直線
過右焦點
,與雙曲線
的右焦點交于
,
兩點,且點
在
軸上方,若
,則直線
的斜率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知f(x)=|x+a|(a∈R).
(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;
(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是連續(xù)的偶函數(shù),且
時,
是單調(diào)函數(shù),則滿足
的所有
之積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量
(袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù) | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于
的線性回歸方程
.
(2)已知購買原材料的費用 (元)與數(shù)量
(袋)的關(guān)系為
,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入
原材料費用).
參考公式: ,
.
參考數(shù)據(jù): ,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓E的長軸和短軸為對角線的四邊形的面積為
.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設(shè)P為橢圓E上一動點,且滿足
(O為坐標(biāo)原點).當(dāng)
時,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com