日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)設(shè)為非負(fù)實(shí)數(shù),函數(shù)
          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù).

          (Ⅰ) 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
          (Ⅱ)當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);
          當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);
          當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).

          解析試題分析:(Ⅰ)當(dāng)時(shí),,然后對(duì)于分段函數(shù)各段的情況分別說(shuō)明單調(diào)性,整體來(lái)合并得到結(jié)論。
          (2)當(dāng)時(shí),,
          故當(dāng)時(shí),,二次函數(shù)對(duì)稱軸,那么結(jié)合二次函數(shù)的 性質(zhì)可知頂點(diǎn)的函數(shù)值為正數(shù),負(fù)數(shù),還是零,來(lái)確定零點(diǎn)的問(wèn)題。
          解:(Ⅰ)當(dāng)時(shí),,
          ① 當(dāng)時(shí),,∴上單調(diào)遞增;
          ② 當(dāng)時(shí),,
          上單調(diào)遞減,在上單調(diào)遞增;
          綜上所述,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
          (Ⅱ)(1)當(dāng)時(shí),,函數(shù)的零點(diǎn)為;   
          (2)當(dāng)時(shí),,
          故當(dāng)時(shí),,二次函數(shù)對(duì)稱軸,
          上單調(diào)遞增,又,f(x)與x軸在有唯一交點(diǎn);
          當(dāng)時(shí),,二次函數(shù)對(duì)稱軸,
          上單調(diào)遞減,在上單調(diào)遞增;∴
           當(dāng),即時(shí),函數(shù)軸只有唯一交點(diǎn),即唯一零點(diǎn),
           當(dāng),即時(shí),函數(shù)軸有兩個(gè)交點(diǎn),即兩個(gè)零點(diǎn)
           當(dāng),即時(shí),f(a)<0,函數(shù)軸有三個(gè)交點(diǎn),即有三個(gè)零點(diǎn)
          綜上可得,當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);
          當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);
          當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).
          考點(diǎn):本題主要考查了函數(shù)單調(diào)性和函數(shù)的零點(diǎn)的運(yùn)用。
          點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于參數(shù)的分類(lèi)討論是否能夠很好的全面的表示出不同情況下的零點(diǎn),也是該試題一個(gè)難點(diǎn)。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)
          已知函數(shù),且,。
          (1)求函數(shù)的解析式;    (2)求函數(shù)上的值域。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題14分)
          已知是一個(gè)奇函數(shù).
          (1)求的值和的值域;
          (2)設(shè)>,若在區(qū)間是增函數(shù),求的取值范圍
          (3) 設(shè),若對(duì)取一切實(shí)數(shù),不等式都成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (12分)已知函數(shù)
          (Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;
          (Ⅱ)若對(duì)任意,恒成立,試求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (12分)已知函數(shù),,設(shè).
          (1)求的單調(diào)區(qū)間;
          (2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率
          恒成立,求實(shí)數(shù)的最小值.
          (3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖
          象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)
          已知:函數(shù)y=f (x)的定義域?yàn)镽,且對(duì)于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當(dāng)x>0時(shí),f (x)<0恒成立.
          證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
          (2)函數(shù)y=f (x)是奇函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
          (1)化簡(jiǎn):;
          (2)畫(huà)出函數(shù)上的圖像;
          (3)證明:上是減函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題12分)已知).
          (1)判斷函數(shù)的奇偶性,并證明;
          (2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
          (3)是否存在實(shí)數(shù),使得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/2/172rn4.png" style="vertical-align:middle;" />時(shí),值域?yàn)?br />,若存在,求出實(shí)數(shù)的取值范圍;若不存在,則說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
          ⑴ 求,滿足的關(guān)系式;
          ⑵ 若上恒成立,求的取值范圍;
          ⑶ 證明:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案