日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+m,其中m∈R,定義數(shù)列{an}如下:a1=0,an+1=f(an),n∈N*.
          (1)當m=1時,求a2,a3,a4的值;
          (2)是否存在實數(shù)m,使a2,a3,a4構(gòu)成公差不為0的等差數(shù)列?若存在,求出實數(shù)m的值,并求出等差數(shù)列的公差;若不存在,請說明理由.
          (3)若正數(shù)數(shù)列{bn}滿足:b1=1,bn+1=2f(
          bn
          )-2m
          (n∈N*),Sn為數(shù)列{bn}的前n項和,求使Sn>2010成立的最小正整數(shù)n的值.
          分析:(1)令m=1,代入確定出f(x)的解析式,由a1=0,an+1=f(an),令n=2即可求出a2的值,然后由a2的值,an+1=f(an),令n=3即可求出a3的值,同理得到a4的值;
          (2)由(1)的方法分別表示出a2,a3及a4,根據(jù)等差數(shù)列的性質(zhì)列出關(guān)于m的方程,根據(jù)m=0得到三項都為0,不合題意,故當m不等于0,所以當m不為0時,方程兩邊除以m,得到關(guān)于m的一元二次方程,求出方程的解即可得到m的值,確定出三項的值,用后一項減去前一項即可求出對應(yīng)的公差d的值;
          (3)由b1=1,bn+1=2f(
          bn
          )-2m
          (n∈N*),根據(jù)f(x)的解析式,求出bn+1與bn的關(guān)系式,從而確定出正數(shù)數(shù)列{bn}是以1為首相,2為公比的等比數(shù)列,根據(jù)等比數(shù)列的前n項和公式表示出Sn,代入不等式中即可求出正整數(shù)n的最小值.
          解答:解:(1)m=1時,f(x)=x2+1,因為a1=0,
          所以a2=f(a1)=f(0)=1,a3=f(a2)=2,a4=f(a3)=5;((3分),每求對一項得1分)
          (2)f(x)=x2+m,則a2=m,a3=m2+m,a4=(m2+m)2+m=m4+2m3+m2+m,(5分)
          如果a2,a3,a4成等差數(shù)列,
          則m2+m-m=(m4+2m3+m2+m)-(m2+m),m4+2m3-m2=0,(6分)
          若m=0,則a2=a3=a4=0,不合題意,
          故m≠0.所以,m2+2m-1=0,所以m=
          -2±
          8
          2
          =-1±
          2
          .(8分)
          m=-1+
          2
          時,公差d=a3-a2=m2+m-m=m2=3-2
          2
          ,(9分)
          m=-1-
          2
          時,公差d=m2=3+2
          2
          ;(10分)
          (3)b1=1,bn+1=2(bn+m)-2m=2bn,(12分)
          所以{bn}是首項為1,公比為2的等比數(shù)列,
          則Sn=2n-1>2010,即2n>2011,解得n>10.(15分)
          所以,使Sn>2010成立的最小正整數(shù)n的值為11.(16分)
          點評:此題考查了數(shù)列的遞推式,等比數(shù)列的前n項和及確定方法,以及等差數(shù)列的性質(zhì).學生求m時注意把m=0這種情況舍去.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案