日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          5、已知函數f(x)=xsin126°sin(x-36°)+xcos54°cos(x-36°),則f(x)是( 。
          分析:通過誘導公式,利用兩角和的余弦函數,化函數為xsinx,即可判定奇偶性和單調性,可得選項.
          解答:解:∵f(x)=xsin126°sin(x-36°)+xcos54°cos(x-36°)=x[sin54°sin(x-36°)+cos54°cos(x-36°)]
          =xcos(x-36°-54°)=xcos(x-90°)=xsinx
          ∴f(-x)=-xsin(-x)=xsinx=f(x)
          ∴f(x)是奇函數.
          故選A.
          點評:本題主要考查函數奇偶性的判斷,同時考查了誘導公式,和差角公式,是個基礎題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•深圳一模)已知函數f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2011•上海模擬)已知函數f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數學 來源:上海模擬 題型:解答題

          已知函數f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數學 來源:深圳一模 題型:解答題

          已知函數f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

          查看答案和解析>>

          同步練習冊答案