日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 從邊長(zhǎng)為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的正方形,再將四邊向上折起,做成一個(gè)無蓋長(zhǎng)方體鐵盒,要求長(zhǎng)方體的高度與底面邊長(zhǎng)的比值不超過常數(shù)tt>0).試問當(dāng)x取何值時(shí),容積V有最大值.

          提示:V=x(2a-2x2=4(a-x2·x.

          t,∴0<x,

          ∴函數(shù)V=Vx)=4xa-x2的定義域?yàn)椋?, ].?

          顯然a,∴V′=4(x-a)(3x-a),由V′>0,得0<xxa.此時(shí)Vx)為增函數(shù);由V′<0,得xa,此時(shí)Vx)為減函數(shù).

          ①當(dāng),即t時(shí),在x=時(shí),V有最大值a3;?

          ②當(dāng),即0<t時(shí),在x=時(shí),V有最大值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          從邊長(zhǎng)為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊為x的正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方形鐵盒,要求長(zhǎng)方體的高度與底面邊的比值不超過常數(shù)t(t>0).試問當(dāng)x取何值時(shí),容量V有最大值.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          從邊長(zhǎng)為2a的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度x與底面正方形的邊長(zhǎng)的比不超過常數(shù)t.問:
          (1)求長(zhǎng)方體的容積V關(guān)于x的函數(shù)表達(dá)式;
          (2)x取何值時(shí),長(zhǎng)方體的容積V有最大值?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

          (本題滿分12分)
          從邊長(zhǎng)為2a的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度x與底面正方形的邊長(zhǎng)的比不超過常數(shù)t.
          問:(1)求長(zhǎng)方體的容積V關(guān)于x的函數(shù)表達(dá)式;(2)x取何值時(shí),長(zhǎng)方體的容積V有最大值?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省宜昌市夷陵中學(xué)、荊門市鐘祥一中高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          從邊長(zhǎng)為2a的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度x與底面正方形的邊長(zhǎng)的比不超過常數(shù)t.問:
          (1)求長(zhǎng)方體的容積V關(guān)于x的函數(shù)表達(dá)式;
          (2)x取何值時(shí),長(zhǎng)方體的容積V有最大值?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題

          (12分)如圖,從邊長(zhǎng)為2a的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,再將四邊向上折起,做成一個(gè)無蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度x與底面正方形的邊長(zhǎng)的比不超過常數(shù)t,問:x取何值時(shí),長(zhǎng)方體的容積V有最大值?

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案