【題目】在下列命題中,正確命題的個數(shù)為( 。
①兩個復數(shù)不能比較大。
②,若
,則
;
③若是純虛數(shù),則實數(shù)
;
④是虛數(shù)的一個充要條件是
;
⑤若是兩個相等的實數(shù),則
是純虛數(shù);
⑥的一個充要條件是
.
A. 0 B. 1 C. 2 D. 3
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,關于x的方程[f(x)]2+mf(x)﹣1=0有三個不同的實數(shù)解,則實數(shù)m的取值范圍是( )
A.(﹣∞,e﹣ )
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項公式;
(2)設Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項公式;
(3)設有m項的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+
)+…+lg(1+
)=lg(log2am).
問數(shù)列{bn}最多有幾項?并求出這些項的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓右焦點
,離心率為
,過
作兩條互相垂直的弦
,設
中點分別為
.
(1)求橢圓的方程;
(2) 證明:直線必過定點,并求出此定點坐標;
(3) 若弦的斜率均存在,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)的表達式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣
,
),現(xiàn)已知函數(shù)f(x)=
,數(shù)列{an}的通項公式為an=f(
)(n∈N),則此數(shù)列前2017項的和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對餐飲服務行業(yè)的要求也越來越高,由于工作繁忙無法抽出時間來享受美味,這樣網上外賣訂餐應運而生.若某商家的一款外賣便當每月的銷售量(單位:千盒)與銷售價格
(單位:元/盒)滿足關系式
其中
,
為常數(shù),已知銷售價格為14元/盒時,每月可售出21千盒.
(1)求的值;
(2)假設該款便當?shù)氖澄锊牧稀T工工資、外賣配送費等所有成本折合為每盒12元(只考慮銷售出的便當盒數(shù)),試確定銷售價格的值,使該店每月銷售便當所獲得的利潤最大.(結果保留一位小數(shù))
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com