日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某市推行“共享汽車”服務(wù),租用汽車按行駛里程加用車時間收費,標(biāo)準(zhǔn)是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時大約1小時”,并將自己近50天往返開車的花費時間情況統(tǒng)計如下

          時間(分鐘)

          [15,25

          [2535

          [35,45

          [45,55

          [55,65

          次數(shù)ξ

          8

          18

          14

          8

          2

          將老李統(tǒng)計的各時間段頻率視為相應(yīng)概率,假定往返的路況不變,而且每次路上開車花費時間視為用車時間.

          1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);

          2)小劉認(rèn)為只要上下班開車總用時不超過45分鐘,租用“共享汽車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有ξ天為“最優(yōu)選擇”,求ξ的分布列和數(shù)學(xué)期望.

          【答案】117.12;(2)分布列見解析,1.6.

          【解析】

          1)求出租車費用的頻率分布表,再計算平均租車費用;

          2)根據(jù)二項分布的概率公式求出各種情況對應(yīng)的概率,得出分布列和數(shù)學(xué)期望.

          解:(1)列出用車花費與相應(yīng)頻率的數(shù)表如下:

          花費

          14

          16

          18

          20

          22

          頻率

          0.16

          0.36

          0.28

          0.16

          0.04

          估計小劉平均每天的租車費用為:

          (2)的可能取值為0,1,2.

          用時不超過45分鐘的概率為0.8,且

          ,,

          的分布列為:

          0

          1

          2

          0.04

          0.32

          0.64

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)分別是橢圓的左、右焦點.

          (1)若是該橢圓上的一個動點,求的最大值和最小值;

          (2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐PABC中,PAAB,PA1PC3,BC2sinPCA,EF,G分別為線段的PC,PBAB中點,且BE

          1)求證:ABBC

          2)若M為線段BC上一點,求三棱錐MEFG的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________

          【答案】

          【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時,則平行AC直線即可故a=-2,當(dāng)a>0時,則直線平行AB即可,故a=1

          點睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關(guān)系求解即可

          型】填空
          結(jié)束】
          16

          【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以 , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對應(yīng)的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出以下四個結(jié)論:

          (1)函數(shù)的對稱中心是;

          (2)若關(guān)于的方程沒有實數(shù)根,則的取值范圍是;

          (3)已知點與點在直線兩側(cè),則

          (4)若將函數(shù)的圖象向右平移個單位后變?yōu)榕己瘮?shù),則的最小值是;

          其中正確的結(jié)論是:_____________________(把所有正確命題的序號填上).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

          (Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;

          (Ⅱ)設(shè)點P的直角坐標(biāo)為,若直線l與曲線C分別相交于A,B兩點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊上劃出一個三角形地塊種植草坪,兩個三角形地塊種植花卉,一個三角形地塊設(shè)計成水景噴泉,四周鋪設(shè)小路供居民平時休閑散步,點在邊上,點在邊上,記

          1)當(dāng)時,求花卉種植面積關(guān)于的函數(shù)表達式,并求的最小值;

          2)考慮到小區(qū)道路的整體規(guī)劃,要求,請?zhí)骄?/span>是否為定值,若是,求出此定值,若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中,a10,an+1an+6n+3,數(shù)列{bn}滿足bnn,則數(shù)列{bn}的最大項為第_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校的名高三學(xué)生參加了天一大聯(lián)考,為了分析此次聯(lián)考數(shù)學(xué)學(xué)科的情況,現(xiàn)隨機從中抽取名學(xué)生的數(shù)學(xué)成績(滿分:分),并繪制成如圖所示的莖葉圖.將成績低于分的稱為不及格,不低于分的稱為優(yōu)秀,其余的稱為良好”.根據(jù)樣本的數(shù)字特征估計總體的情況.

          1)估算此次聯(lián)考該校高三學(xué)生的數(shù)學(xué)學(xué)科的平均成績.

          2)估算此次聯(lián)考該校高三學(xué)生數(shù)學(xué)成績不及格優(yōu)秀的人數(shù)各是多少.

          3)在國家扶貧政策的倡導(dǎo)下,該地教育部門提出了教育扶貧活動,要求對此次數(shù)學(xué)成績不及格的學(xué)生分兩期進行學(xué)業(yè)輔導(dǎo):一期由優(yōu)秀學(xué)生進行一對一幫扶輔導(dǎo),二期由老師進行集中輔導(dǎo).根據(jù)實踐總結(jié),優(yōu)秀學(xué)生進行一對一輔導(dǎo)的轉(zhuǎn)化率為;老師集中輔導(dǎo)的轉(zhuǎn)化率為,試估算經(jīng)過兩期輔導(dǎo)后,該校高三學(xué)生中數(shù)學(xué)成績?nèi)匀徊患案竦娜藬?shù).

          注:轉(zhuǎn)化率

          查看答案和解析>>

          同步練習(xí)冊答案